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1. Day 1 Lecture 1: Introduction to Topological Quantum Field Theory

Topological quantum field theory (TQFT) serves as a very useful metaphor in much of

representation theory. Many questions in representation theory can be organized in terms

of TQFTs. In today’s lecture, we will consider toy models associated to a finite group G.

In what follows, to any finite group G we associate an n-dimensional TQFT which we will

denote by Zn
G, or simply Z if the group and dimension are clear from context.

1.1. What is a TQFT?. A TQFT is a linear representation of the bordism category Bordn

of manifolds of dimension ≤ n. By a linear representation we mean that we want a TQFT

to be a functor out of Bordn into a category which in some ways resembles the category of

vector spaces (over C, say). For example, this functor assigns

(i) to a closed n-dimensional manifold Σn a number Z(Σn) ∈ C,
(ii) to an (n− 1)-dimensional manifold Σn−1 a vector space Z(Σn−1) ∈ VectC,

(iii) to an (n− 2)-dimensional manifold Σn−2 a C-linear category Z(Σn−2) ∈ CatC,
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and so on. As the codimension of Σ increases, so too should the categorical complexity of

Z(Σ).

What properties do we want this functor to satisfy?

(i) We want this functor to be symmetric monoidal, where the monoidal structure in

Bordn is given by disjoint union ⊔, and in the target category by tensor product ⊗.
A TQFT will send the empty manifold ϕm of dimension m to the monoidal unit in

the corresponding category:

Z(ϕn) = 1 ∈ C, Z(ϕn−1) = C ∈ VectC . . .

This property corresponds to the Q in TQFT and can be thought of a mathematical

encoding of superposition of quantum states.

(ii) We want this functor to be locally constant in families. That is, Z(Σn) should be a

locally constant function on the moduli space of n-dimensional manifolds. Similarly,

Z(Σn−1) should be a locally constant sheaf over this moduli space, which carries an

action of Diff(Σn−1). This corresponds to the first ‘T’ in TQFT.

Remark 1.1. For our purposes, we can think of the moduli space of n-manifolds as∐
Mn BDiff(M), where the coproduct is taken over all n-manifolds.

1.2. Morphisms. A morphism between two (n− 1)-dimensional manifolds ∂in and ∂out in

Bordn is an n-dimensional manifold Σ such that ∂Σ = ∂in ⊔ ∂out.

Remark 1.2. We are assuming that our TQFTs are oriented. This is what enables us to

distinguish between incoming and outgoing boundaries.

We denote such a morphism symbolically by ∂in
Σn

−→ ∂out and pictorially by
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

@in

@in

@out

@out

§n

S1

§

§2

Á2
Á2

Since Z is a functor, there is an associated morphism Z(∂in)
Z(Σn)−−−→ Z(∂out) which is

given by a linear transformation. Composition of morphisms corresponds to gluing bordisms

together, which can be represented pictorially as

Physically, this is meant to encode the idea of locality, that the physics at a point is entirely

determined by what happens near it. This allows one to compute the output of Z on a
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complicated manifold by chopping it up into more manageable pieces. For example, we can

consider breaking up a surface as follows
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from which we see that we can compute Z(Σ2) as a composition C→ Z(S1)→ C.

Example 1.3 (1d-Oriented TQFT and Beyond). The functor Z assigns to a point with

positive orientation a vector space Z(•+) = V , and to a point with negative orientation

another vector space Z(•−) = V ∨.

(i) There are natural maps C → V ⊗ V ∨ and V ⊗ V ∨ → C. One can show that by

considering the composition C→ V ⊗ V ∨ → C that, in fact, V ∨ = V ∗ and the second

map V ⊗ V ∨ → C is given by evaluation.

(ii) We find that Z(S1) = dimV , and more generally that in an n-dimensional theory we

have Z(Σn−1 × S1) = dimZ(Σn−1).

(iii) Given a diffeomorphism f : Σn−1 → Σn−1, there is a corresponding linear map

Z(f) : Z(Σn−1)→ Z(Σn−1). We can see that trZ(f) corresponds to Z applied to the

mapping torus of f (an n-manifold).

1.3. Where are the Fields? In order to talk about quantum field theory, all that is really

required is a way to map from physical spacetimes to spaces of states. This is what the

functor Z accomplishes. However, in many cases of interest, Z factors though a geometric
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category, as in the following diagram:

Bordn Linear categories

Spaces (stacks) with correspondences

Z

FZ G

This type of factorization is additional structure on the TQFT, and a TQFT together with

such a factorization is called a Lagrangian TQFT. The functor FZ in the diagram assigns

spaces of fields to objects of Bordn. Typically, this space is given by Map(−, T ) where T is

some target manifold, and G is given by taking functions or categories of sheaves on this

space.

Remark 1.4. Most TQFTs that you will find in physics textbooks are Lagrangian, but

there are important theories which do not have known Lagrangian structures. Moreover, the

same TQFT can have multiple Lagrangian structures, all of which result in the same physical

theory. This can result in surprising mathematical statements or dualities in physics.

Example 1.5. Let G be a finite group and consider the corresponding groupoid BG; i.e.

BG is a category with a single object ∗ and morphisms Hom(∗, ∗) = G.

(i) There exists a Lagrangian TQFT with space of fields given by FG(Σ) = Map(Σ, BG),

which is also called the space of local systems on G, denoted LocGΣ. Note that this

is what the TQFT assigns to Σ, regardless of its dimension.

(ii) This space can equivalently be thought of as the space of G-bundles on Σ, the space

of G-covering spaces, and as the space of maps π1(Σ)→ G up to conjugation.

Remark 1.6. The identification of the stack of G-bundles with G-local systems on Σ

fails when G is not a discrete group.

(iii) This TQFT assigns to S1 the points of G modulo the conjugation action. So fields on

the circle are given by group elements up to conjugation.

Given a bordism ∂in
Σ−→ ∂out, the functor FG yields a correspondence through restriction.

That is, if we consider the bordism
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then from this we obtain the following maps by restricting to the boundary components

FG(Σ)

FG(∂in) FG(∂out)

Similarly, if we glue two bordisms together we obtain the picture

§2
§1

@12

§n¡1 Sn¡1

1 = tr =

§n¡1

which corresponds to the following diagram.

FG(Σ1 ⊔∂12 Σ2)

FG(Σ1) FG(Σ2)

FG(∂1) FG(∂12) FG(∂2)

Similarly, given a 2-manifold Σ2, we have

FG(Σ) = LocG(Σ) = Maps(π1(Σ), G)/Conjugation,

which is the G-character stack of Σ.

1.4. Linearizing the Space of Fields. Continuing the example above where FG =

Hom(−, BG), in order to construct a TQFT, we need to linearize the spaces of fields.

While FG(Σ) did not depend on the dimension of Σ, our linearization will. Let X be a finite

orbifold, such as LocG(Σ). If Σ is of top dimension, then we attach a number to X = LocG(Σ)

by

#X =

∫
X

1 =
∑
x∈X

1

|Autx|

If Σ has codimension one, then to X = LocG(Σ) we attach the vector space of global sections

of the constant sheaf, i.e.,

C[X] = Γ(X,C) =
⊕
x∈X

C
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For codimension two Σ, we assign the category of vector bundles on X:

Vect[X] =
⊕
x∈X

Vect (•/Autx)

where Vect (•/Autx) by definition is the category of representations of this automorphism

group.

Example 1.7. Fix a finite group G. Then, we can consider what different dimensions of

TQFT assign to different dimensions of manifold. The empty sections are not of interest for

now.

Z2
G Z3

G Z4
G

Ξ3 N/A LocGΞ C[LocGΞ]
Σ2 #LocGΣ C[LocGΣ] Vect[LocGΣ]

S1 C[G/G] Vect[G/G]

• RepG

1.5. Observables in TQFT. An observable is a physical quantity we can measure at a

point. At any given point, there is an entire algebra of local observables. The data of a local

observable can be captured by the state on a sphere surrounding the chosen point. Hence, the

algebra of local observables in a TQFT is the space of states on a sphere, and Z(Sn−1) plays

a special role in TQFTs. In particular, this class of observables has several nice algebraic

structures.

(1) Algebra structure: by taking a sphere and removing two smaller spheres from the

inside, we obtain a bordism Sn−1 ⊔ Sn−1 → Sn−1.

§2
§1

@12

§n¡1 §n¡1Sn¡1

1 = tr =

This gives a map on the space of observables Z(Sn−1)⊗ Z(Sn−1)→ Z(Sn−1). This

is a product which is locally constant over the configuration space of two balls inside

a larger ball. An algebra with multiplication parameterized by the space of such

configurations is called an En-algebra.



Note that in dimensions ≥ 2 this multiplication is commutative1; however, in 1

dimension we only get an associative algebra.

(2) Module structure: Given an (n − 1)-dimensional manifold Σn−1, consider the

n-dimensional manifold given by Σn−1 × [0, 1]. From this manifold we can remove a

ball Sn−1 from the middle, thus giving us a bordism Σn−1 ⊔ Sn−1 → Σn−1.

§2
§1

@12

§n¡1 Sn¡1

1 = tr =

§n¡1

This gives an action map Z(Sn−1)⊗ Z(Σn−1)→ Z(Σn−1). Thus, the observables

on a sphere act on the observables on any other (n− 1)-dimensional manifold.

Example 1.8. (i) In 2 dimensions, Z(S1) has a commutative algebra structure, a unit,

and a trace operation. These operations make Z(S1) into a commutative Frobenius

algebra. The unit and trace are represented by the pictures

§2
§1

@12

§n¡1 §n¡1Sn¡1

1 = tr =

(ii) In our finite group example, this Frobenius algebra is the algebra of class functions

on the group: C[G/G]. In this case, the trace is calculated by evaluating at 1 and

dividing by |G|.

2. Day 1 Lecture 2

Written by: Hyun Jong Kim, Han Li The idea of arithmetic topology: basic arithmetic

objects, including rings and, should behave like low-dimensional manifolds. The following

table lists out arithmetic objects on the left column and analogous topological objects on the

right column:

1This is not really true, but is sufficient for our purposes. There is a precise sense in which En-algebras

become more commutative as n→∞, with the limiting object, an E∞-algebra, being truly commutative.
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Q, Z, Z[i], Fp[i], curve X over Fp 3-manifolds

Z[1
6
], Zp 3-manifolds with boundaries

Qp, Fp((t)), R, C, curve X over Fp 2-manifolds

Fp((t)) 1-manifolds

ideals links

prime ideals knots

Op tubular neighborhood of p

A motivation of these analogies is the analogy between π1(manifold) and the étale funda-

mental groups of schemes.

History. Around 1880, Dedekind was unhappy with Riemann’s (lack of a precise) definition

of Riemann surfaces. Consequently he and Weber wrote out a text including a definition of

Riemann surfaces. He saw that a branched cover Σ→ Σ′ of Riemann surfaces are analogous

to an extension L/K of number fields .

In 1949, Weil conjectured the existence of a purely algebraic approach to studying the

topology of algebraic varieties, i.e., for a complex algebraic variety X = SpecR, there should

be a way to compute H∗(X(C)) from R alone. In particular, C-automorphisms of R, including

insane ones (arising from the arithmetic of C rather than the geometry of X), should induce

a C-automorphism of H∗(X). This was realized by Grothendieck’s school with the étale

topology H∗
ét(R).

In the 1960s, Poitou and Tate computed H∗
ét(R) for R = Z[1

p
] etc. Mumford and Mazur

proposed that SpecZ is like a 3-manifold.

Example. Let K be a number field, S be a finite set of places including all Archimedean

ones, and O be the ring of integers in K; alternatively, let K = X(Fq), X a smooth projective

curve, and O be the ring of functions that are “regular away from S”. For example, K = Q,

S = {∞, 2}, and O = Z[1
2
]. Let M be a coefficient system.

Then there is a long exact sequence:

· · · → H3−i
ét (SpecO,M∗)∗ → H i

ét(SpecO;M)→
⊕
ν∈S

H i
ét(SpecKν ;M)(2.1)

→ H
3−(i+1)
ét (SpecO,M∗)∗ → · · ·

(If M is finite, then M∗ = Hom(M,S1). In general the twist involved in ∗ corresponds to the

non-orientability of the manifold.)

This is analogous to the long exact sequence of cohomology, with X a 3-manifold with

boundary Y :

· · · → H i(X, Y ;M)→ H i(X;M)→ H i(Y ;M)→ · · · .(2.2)



LAWRGE 2024 NOTES 9

Figure 2.1. SpecO is analogous to a 3-manifold whose boundary is
⊔

ν∈S SpecKν

Under Poincaré duality, which states that H i(X, Y ;M) ∼= H3−i(X;M∗)∗, the above long

exact sequence (2.2) becomes

· · · → H3−i(X;M∗)∗ → H i(X;M)→ H i(Y ;M)→ · · · .

which is analogous to (2.1). Notice the absence of Y on the right: X “knows” what ∂X is.

This is the Poincaré–Lefschetz duality.

Then the analogy suggests that SpecO is like a (non-orientable) 3-manifold whose boundary

is the union
⊔

ν∈S SpecKν , see Figure 2.1.

Of course, as a topological space, SpecO is not a 3-dimensional space. More generally, we

emphasize that the geometric analogies that we record in these notes are analogies and we

are not necessarily stating such analogies as precise facts about schemes or spaces.

In the example of O = Z[1
2
], SpecZ[1

2
] has two boundary components, SpecR and SpecQ2,

see Figure 2.2. Moreover, a prime ideal is like a knot/cycle — see Figure 2.3, which draws

the prime ideal (3) of Z[1
2
] drawn as a knot/cycle.

One can obtain SpecZ[1
6
] from SpecZ[1

2
] by cutting out a tube around the knot associated

to the prime ideal 3Z, i.e., the solid tube SpecZ3 with boundary SpecQ3, see Figure 2.4; in

other words, gluing SpecZ3 to SpecZ[1
6
] along SpecQ3 yields SpecZ[1

2
].
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Figure 2.2. SpecZ[1
2
] is analogous to a 3-manifold whose boundary is

SpecQ2 ⊔ SpecR

Langlands as a 4d TQFT. There are no 4-manifolds in the dictionary, so we start by

assigning vector spaces to arithmetic objects analogous to 3-manifolds:

“3-manifolds” 7→ vector spaces

“2-manifolds” 7→ categories

“1-manifolds” 7→ 2-categories

For example, for G = SLn (Question: does anything below change if G isn’t

SLn?), the “TQFT” AG works as follows:

3d


Z 7→ functions on G(Z)\G(R), i.e., automorphic forms

Z[1
p
] 7→ functions on G(Z[1

p
])\(G(R)×G(Qp))

curve X over Fp 7→ functions on BunGX

2d

R or Qp 7→ RepG(R) or RepG(Qp) (local Langlands)

curve X over Fp 7→ Shv(BunGX) (global geometric Langlands)

On the bordism side, ∂Z[1
p
] = R⊔Qp; on the algebra side, {functions on G(Z[1

p
])\(G(R)×

G(Qp))} ∈ Rep(G(R)×G(Qp)) (the regular representation). This agrees with how manifolds

with boundaries work in a 4d TQFT: a 3-manifold with boundary should be mapped to a

category together with an object.

As for composition, since SpecZ[1
p
] ∪SpecQp SpecZp = SpecZ, we expect AG(Z) =

HomRepG(Qp)(AG(Zp),AG(Z[1p ])) (or the other way, but that turns out to not work). This

forces AG(Zp) to be ind
G(Qp)

G(Zp)
1 (by definition, indG

H ρ = {ϕ : G→ V : ϕ(gh−1) = ρ(h)ϕ(g);

ϕ has compact support mod H}).
This also shows that EndRepG(Qp)AG(Zp) acts on AG(Z) (by composition). Actually

EndRepG(Qp)AG(Zp) is the (unramified) Hecke algebra for G(Qp). Therefore, AG already has

a bunch of operators built in.
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Figure 2.3. The prime ideal (3) of Z[1
2
] is analogous to a knot/cycle in a 3-manifold

Figure 2.4. A solid tube is drawn around the knot corresponding to the

prime ideal (3) of Z[1
2
]. This solid tube is removed to obtain Z[1

6
].

Reciprocity. One of the central conjectures in the Langlands program is “reciprocity”,

which is a bijection

{eigenfunctions of Hecke operators} ↔ {homomorphisms π1(the arithmetic object)→ Ǧ}.

AG
∼↔ BǦ

The equivalence AG
∼↔ BǦ is of the aforementioned arithmetic TFQT AG with a different

arithmetic TFQT BǦ. The statement that these two arithmetic TQFT’s are equivalent

encodes the various layers of the Langlands program — one can put in a number field, local

field, etc. and get this kind of bijection. The advantage of this formulation is not that one



can obtain new statements (as one recovers already known statements when specializing

to each arithmetic object) but rather that it gives a uniform way that one can talk about

phenomena that occur throughout the Langlands program without having to separate various

cases. one can recover many different aspects/statements in different parts of the Langlands

program. The relative Langlands duality is a similar phenomenon — it exists in every layer

of the Langlands program — and hence the above equivalence is a useful way to mentally

organize and keep track of the relationships amongst the layers.

Exercise 1. (a) We need to verify∑
i

q−
i
2 tr g|C[Y ]i =

1

(1− q−
1
2x)(1− q−

1
2x−1)

.

The right hand side is the product of two geometric series. The coefficient of q−
i
2 is x−i +

x−i+2 + · · ·+ xi, which is supposedly equal to trx|C[Y ]i .

C[Y ] = C[T ∗A1] = C[q, p]. For f ∈ C[q, p], x · f(q, p) = f((q, p) · x) = f(xq, x−1p); in

particular, x · q = xq and x · p = x−1p.

A basis of C[Y ]i is {qip0, . . . , q0pi}, which, upon action by x, becomes {xiqip0, . . . , x−iq0pi}.
Therefore, x|C[Y ]i is a diagonal matrix, with trace xi + xi−2 + · · ·+ x−i.

(b) Equivalently, x ∈ C∗ now diagonally acts on Y 2.

(c) Adg

[
a b

c d

]
=

[
a x2b

x−2c d

]
. Therefore, equivalently, x2 ∈ C∗ acts on Y × Y , acting

trivially on the first Y and in the manner of (a) on the second Y .

3. Day 1 Lecture 3 (Yiannis)

Today’s first talk today was about (4d) TQFTs and the second talk was about Langlands

as a TQFT. This third talk will be about relative Langlands as TQFTs. Here, relative =

Langlands + some decorations.

Let’s quickly recap what we have heard in the previous lectures. Everything is going to

be 4d TQFTs, which means to a d-dimensional closed manifold C one attaches some state

spaces AG(C) which have categorical complexity opposite to the dimension, i.e. AG(C) is a

4− d− 1-category, -1 = number, 0 = vector space, 1 = category.

Let G be a split connected reductive algebraic group over a local or global field. The

followings are three typical examples of the A side theory of Langlands, where G gives rise

to AG(C) the A-side theory associated to C.

Example 3.1. C=global field F , such as a number field, or a function field Fq(γ) where γ is

some smooth projective curve. Then C is some kind of 3 dimensional manifold.

The corresponding AG(C) would be some everywhere unramified automorphic functions

Fns(G(F )\G(AF )/G(Ô)) when F is a number field.
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In the function field case there are two ways to think about it. One is the same as what we

did in the number field case above. Another interpretaion would be the set of isomorphism

classes of groupnoids of G-bundles of the curve γ over Fq.

Example 3.2. Let Fv be some local field, for example Fv = Qp or Fq((t)). They are of

dimension 2. So we attach to it AG(C) the category of G(Fv)-representations.

Example 3.3. Another example of dimension 2 is F̄q(γ). To this we attach the category of

sheaves on Bunγ
G, denoted by Shv(Bunγ

G).

Before we talk about the boundary conditions for the above examples, let’s recall some

examples of bordisms from previous lectures.

Let S be a finite set of places of the field F , we have OS, the ring of S-integers. Then

C = SpecOS is a manifold with boundary, the boundaries being
∐

v∈S SpecFv. We think of

C as a bordism from empty set to the boundary ∂C, which, according to TQFT corresponds

to a map from the unit object to the theory over the boundary A(∂C) = Rep G(Fv). Giving

such map is the same as giving an object in A(∂C), which we choose to be the automorphic

forms possibly ramified at places in S, i.e. Fns(G(F )\G(AF )/G(ÔS)).

The above example shows part of the relation between the theory of first example and the

second by telling us how they glue together. There is also a relation between the first and

the third given by some trace of Frobenius. Let me give the geometric picture behind this.
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When given a smooth projective curve γ over Fq, there is a map from γ to SpecFq. Like

David explained, SpecFq should be thought of as some kind of circles because the Galois

group of its etale cover is essentially Z. A point on the circle corresponds to choosing a

algebraic closure (not canonical), i.e. a map from Spec F̄q to SpecFq. A fiber over the point

is the curve γ base change to the chosen algebraic closure γF̄q
, which is a Riemann surface in

the geometric analogue (if you replace the algebraic closure by C). In a word, γ should be

thought of as a family of Riemann surfaces over a circle. But this family is not topologically

trivial. There is a Frobenius action and there is a construction of mapping cyclinder that

David explained in the first lecture. The Frobenius action will tell you the monodromy going

around the circle, which allows you to think of γ as something 3 dimensional and to take

“trace” of the action. There is a categorical trace given by the Frobenius action that relates

the theory of the first and the third examples.

So, what is relative Langlands and what is TQFT with boundary? Let me draw a picture

that David didn’t have time to draw. He would talk about it more tomorrow.
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So the idea is that, in David’s talk, our category is some manifold with bordisms. For

each manifold you have a canonical but “silly” bordism which is from the manifold to itself

(multiplying the manifold with the interval [0.1]). This is just the identity map. So the theory

with boundary allows one to remove some boundaries and still think of it as a valid input

for your period. What this means is that when enlarge the category, one can remove the

boundary and think of the trivial cobordism (on the right hand side of the picture) as a

morphism from the empty set to the manifold. Every manifold with boundary comes with a

canonical morphism from empty set. Therefore, no matter what theory AG(C) one have here

(attached to the manifold C), will come with a canonical map from identity element. So the

new theory (with boundary) is richer in the sense that it does not only give us some category

but also an object of that category. But of course this “distinguished element” needs more

data to produce and this data will be some space X with G-action in our theory. And this

element will be denoted by OG,X .

I will want to talk about this additional data (for the “decorations”) without talking about

Hamiltonian and symplectic spaces. The prototype for a toy case is when G is a finite group.

Let X be a vector space with G-action. In this case, (recall that FG(C) is the field theory )

FG(C) = Map(C, pt/G) = Hom(π1(C), G)/ ∼

where ∼ is G-conjugacy. In fact, FG(C) has a lot of names such as BunG and LocG (since

we are in the finite group case, they are the same). The A-side theory attached to C is

AG(C) = Fns(FG(C)). Therefore, the boundary condtion should be a distinguished function

on FG(C), which we shall denote by OG,X . The notation suggests that it is given by the

extra data from G-space X.

Take a principle G bundle EG → C. Since G acts on X, we could construct a vector bundle

over C, denoted by X ×G EG, by taking the product of X and EG then modulo the diagnoal

action.

Therefore, over BunG = FG(C), we can form a space

BunX
G =

{
(EG, σ) : σ = section of X ×G EG

}
The distinguished function OG,X that we associate to this data is defined by

EG 7→ #{σ} = #(BunX
G )EG = #Xϕ

The last equality comes from identifying EG ∈ Map(C, pt/G) with a monodromy ϕ ∈
Hom(π1(C), G)/ ∼. Then #{σ} is nothing but the number of fixed points in X under the

monodromy.

However in the Langlands setting, there is a difference between the above two description

of OG,X , but the philosophy is the same.

The toy case is meant to give you an initial idea of how a space X gives rise to the boundary

conditions. Actually X is not necessarily a vector space. It could be just a set.
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Now back to our 3 examples, what are OG,X in those cases? The table below is a

summarization.

example 1 example 2 example 3

C [dimen-

sion d man-

ifolds]

F global field, [d = 3]

e.g. number fields, function

fields Fq(γ)

Fν local field, [d = 2]

e.g. Qp,Fq((t)).

F̄q(γ) [d = 2]

AG(C)

[(4−d−1)-

category]

Fns(G(F )\G(AF )/G(Ô)),
(in function field case can

be regarded as Bunγ
G)

G(Fv)-representations Shv(Bunγ
G)

OG,X period function FX Fns(X(Fν)) push forward the con-

stant sheaf

C ∈ Shv(BunX
G ) to

Shv(BunG)

BǦ(C) Fns(“Langlands parameters

going into Ǧ”)

cohomological Lang-

lands dual sheaves (lo-

cal Langlands parame-

ters)

QC!(Locγ
Ǧ
)

OǦ,X̌ some “L-functions” (will show up in future

lectures)

(will show up in future

lectures)

Let’s first look at the third example. OG,X is supposed to be some sheaf on the space

BunG = Bunγ
G. The extra data of X gives a space BunX

G over BunG. Pushing forward the

constant sheaf gives one an element in Shv(BunG).

Now it’s time to see what the boundary conditions in other 2 examples are. First let’s try

to imagine what trace of Frobenius would give here. For the first case, we are supposed to

give some automorphic functions. In the function field case it can be regarded as functions on

the BunG over the curve γ. The functions of boundary condition in this case is going to be

called period functions, which we denoted by PX , i.e. OG,X = PX . Here X is a variety over

Fq with G-action. The function is on G-bundles so let’s change our notation for G-bundles

to be [g] (which was EG previously). The reason why we change to this notation is because

we are identifying them with the adelic points in the double quotient. Now the function is

defined by

PX([g]) = #
{
sections of [g]×G X → γ

}
(this number is finite? can be rational?)

And if we denote the characteristic function of the Ô points of X by 1X , there is another

way to write the period functions, which is the following:

PX([g]) =
∑

γ∈X(F )

1X(γg)

where F is the global field.



LAWRGE 2024 NOTES 17

This construction of automorphic functions works for a more general class of functions.

For a function ϕ on X(A) with desired properties (say, rapidly decay, compactly supported,

invariant by X(Ô) translation, ), one can sum over left translation of ϕ by points in X(F ).

Because when X is a affine variety, X(F ) is a discrete set, the sum makes sense. The resulting

function is then invariant under left G(F ) action since the set X(F ) is invariant under G(F ).

This kind of construction is called theta-series in general. In specific context it might also be

called Poincare series, (pseudo-)Eisenstein series, etc.

Finally, what is the boundary condition we want to give for the second example? What we

are going to put here is some G(Fv)-representations. So it is just the space of functions on

X(Fv). It is a G(Fv)-representation because G acts on X.

Now, let me take some time to explain how Bunγ
G(Fq) is identified with the adelic points

G(Fq)\G(A)/G(Ô).
Given a G-bundle E, one can find a open subset U of the curve γ such that E restricting

to U is isomorphic to the trivial G-bundle. The isomorphism is of course not given, but one

can choose such an isomorphism. The complement of U in γ is a set of finite points. So to

get E we just neet to glue the G-bundle on U with the G-bundles on formal disks around

each point not in U . The details of this identification are left as exercise.

Now everything we talked about above is only one-side of Langlands, which is usually

called the A-side of the theory. But Langlands has two sides and the duality between both

sides. So what is the B-side? B-side should be the theory associated to the dual group Ǧ.

Recall that in the first example, the A-side of the theory is just functions Fns(BunG(F )).

The B-side theory BǦ(C) is also functions but it’s, roughly speaking, functions on the

Langlands parameters into Ǧ. And what is the duality here? The duality is an isomorphism

between the two spaces of functions, which is some noncommutative version of Fourier

transform. For automorphic functions, you are supposed to do spectral decomposition into

eigenfunctions of the Hecke operators. Nothing will be meaningful without Hecke operators.

Implicitly behind these equivalences we have Hecke operators and these operators allow you to

spectrally decompose the spaces and on the B-side these are supposed to be joint eigenvalues

of the operators. The most nontrivial part is that originally there is no Galois theory on the

A-side but the Hecke operators relates it to the B-side with Langlands parameters which

related to the Galois representations.

In the third example where A-side theory is some sheaves on BunG, the B-side theory is

some quasi-coherent sheaves QC !(Locγ
Ǧ
). I am not going to say anything about this but just

mentioning it for completion.

The B-side theory in the second example, corresponding to the A-side (which are repre-

sentations of G(Fv)) should also be some kind of spectral decomposition. The best known

version of this categorical Langlands dual is the one proved by Fargues and Scholze. There is

another version proved by Xinwen Zhu.



The relative Langlands duality is supposed to take care of the third column–the boundary

conditions. There should be a corresponding boundary conditions OǦ,X̌ for the B-theory.

For instance, in the first example, where the boundary condition is some period functions

or thera theories, the corresponding B-side boundary condition is some “L-function”. All the

evidenve we have for this duality comes either from this case, where we have some knowledge

about periods and L-functions, or from the second case. But let me not say anything about

that.

I actually lied a bit about this boundary condtions given by X or X̌. In fact they are

in general associated to the analogue of their cotangent spaces. So the conjectural relative

Langlangs duality is actually between (G,M) and (Ǧ, M̌) where M/M̌ are Hamiltonian

G/Ǧ-space. And in some example, M has the interpretation as a cotangent space T ∗X.

Finally let me give a number theoretic example of identification of theta series with periods,

which is the example from Tate thesis. Let’s consider X = A1, with an action of G = Gm. I

am going to take this function

Φ = (⊗ν<∞1Zp)⊗ Φ∞,Φ∞ ∈ S(R)

where we can take Φ∞ = e−x2
, the Guassian. The theta series we construct from this Φ is∑

q∈X(Q)

Φ(qg), g = (1, · · · , 1, x) ∈ [G]

Now, in order for a rational number to be in Zp for every p, it has to be an integer. So we

have ∑
q∈X(Q)

Φ(qg) =
∑
n∈Z

Φ∞(nx) =
∑
n∈Z

e−n2x2

4. Day 2 Lecture 1

4.1. More on TQFTs. Last time (Day 1 Lecture 1), we talked about the notion of a TQFT

as a means to linearize maps into BG = •/G. In Day 1 Lecture 3, we considered the example

of |G| <∞, a TQFT AG which comes with the data of fields FG so that

FG(C) = BunG(C) = Maps(C, •/G) = Hom(π1(C), G)/G.

Note that under the assumption that G is finite, we have that LocG(Σ) = BunG(Σ) =

Maps(Σ, •/G), and we will freely assume this in this subsection. For example, we have that

FG(S
1) = Maps(S1, •/G) = Hom(Z, G)/G = G/G,

where the quotient is taken with respect to the conjugation action.

We can also replace •/G with a finite groupoid (stack) X = X/G, where X is a G-space,

and take FG such that

FG(S
1) = LocXG (S

1) = BunX
G (S

1) = Maps(S1, X/G) = {x ∈ X, g ∈ G, g · x = x}/G

(and similarly for general Σ instead of S1).
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Observe that we have a map LocXG (Σ)→ LocG(Σ) induced by the map X/G→ •/G, since

LocG(Σ) = Maps(Σ, •/G)(= BunG(Σ)).

Once we fix such a G-space X, we have a distinguished element

ΘG,X(Σ) ∈ Z3
G(Σ) = C[LocG(Σ)]

defining a boundary theory ΘG,X .

The 4d (arithmetic) TQFT Z = AG can be obtained by taking a field FG = BunG(−) =
Maps(−, •/G) followed by linearization (taking functions/sheaves on the spaces), as abstracted

in the following diagram:

Manifolds/

Bordism

Linear Categories/

Morphisms

Groupoids (Stacks)/

Correspondences

AG

FG Functions/Sheaves

Let us discuss the functoriality of AG. We know that AG factors via FG, so we begin by

describing functoriality of FG. Given a bordism

M : ∂in → ∂out,

we have a correspondence via the following diagram

FG(M) = BunG(M)

FG(∂in) = BunG(∂in) FG(∂out) = BunG(∂out).

f g

Then we get a morphism AG(M) : AG(∂in)→ AG(∂out) by taking the pullback along the first

morphism f and pushing forward along the second one g.

Moreover, when we are given a G-space X, we can define a distinguished object ΘG,X(Σ) ∈
AG(Σ). We obtain this by looking at an extended bordism M : ∅→ Σ,

Figure 4.1. M : ∅→ Σ



20 LAWRGE 2024 NOTES

which gives us a correspondence

BunX
G (Σ) = Maps(Σ, X/G)

FG(∅) = • FG(Σ) = Maps(Σ, •/G).

which in turn gives a morphism 1→ AG(Σ), or equivalently, an object ΘG,X(Σ) in AG(Σ).

This is how we’ll get period functions/sheaves (and similarly L-functions/sheaves on the

B-side (Spectral side).)

4.2. The Automorphic Theory.

Now we consider the case where G is a reductive group over a field k to get a 4d TQFT

AG which extends to arithmetic manifolds. AG consists of the topology of moduli spaces of

algebraic G-bundles.

In the global geometric setting: Σ is an algebraic curve over F = F (e.g. C, Fq) (2-

dimensional) and we get that FAG
(Σ) = BunG(Σ).

Example 4.1. FGm(Σ) = Pic(Σ).

Example 4.2. If Σ = D×
F = Spec (F ((t))), then we have

FG(D
×
F ) = BunG(D

×
F ) = •/G(F ((t))).

Example 4.3. If Ξ is a curve over Fq, then we have

FG(Ξ) = BunG(Σ)
Fr = BunG(Σ)(Fq).

(Here Σ is the base change to Fq of Ξ, and BunG(Σ)
Fr is the space of fixed points with respect

to the Frobenius.)

Example 4.4. In particular, if Σ = D×
Fq

= Spec (Fq((t))), then we have

FG(D
×
Fq
) = BunG

(
D×

Fq

)Fr
= G(Fq((t)))/

FrG(Fq((t))) ⊃ •/G(Fq((t))).

Now we want to linearize the above spaces. Note that AG sends 3-manifolds to vector

spaces and 2-manifolds to linear categories.

Example 4.5. For a 3-manifold Ξ in Example 4.3, we have

AG(Ξ) = Fun(BunG(Σ)(Fq)),

which is the vector space of unramified automorphic forms.

Example 4.6. For a 2-manifold D×
Fq

in Example 4.4, we have

AG(D
×
Fq
) = Shv(BunG(D

×
Fq
)) = Shv(G(Fq((t)))/

FrG(Fq((t)))),
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the automorphic category attached to the punctured disk and contains Shv(•/G(Fq((t)))) =

Repsmooth(G(Fq((t)))), the category of smooth representations of the group over the local

field Fq((t)), which is what is studied in classical local Langlands.

Example 4.7. Now, one might think that the TQFT only encodes information about the

unramified parts, but in fact, it also sees the ramified parts:

Spec Z[1/2]

Spec Q2

Spec R

Σ \{x1, x2}

x1
x2

We had Spec (Z[1/2]), thought of as a 3-manifold with 2 boundary components Spec (Q2)

and Spec (R). We can similarly take a curve Σ over a finite field Fq, remove a couple of

points x1, x2, and then look at Fun(BunG(Ξ|x1, x2)) (functions on BunG with some extra data

associated to the two points). This gives an object in Rep G(Fq((t)))
2. We omit the details

here, but the point is that the TQFT certainly knows what to do about ramifications: we just

remove a few things so that rather than getting a vector space to a closed 3-manifold, we get

an object in the category associated to the boundary, which in this case is Rep G(Fq((t)))
2.

The following diamond shows the big overview of the various global/local arithmetic/geometric

settings:

Q, Ξ = Σ over Fq 3-manifolds

Qp, Fq((t)) Σ over C,Fq 2-manifolds

Fq((t)), C((t)) 1-manifolds

GlobalArithmetic

Local Geometric
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Σ

x
S2
x

Σ

Figure 4.2. The bordism (Σ× I) \D3
x : S2

x ⨿ Σ→ Σ

We haven’t made precise what sheaf theory we’re working with. For example, for global

geometric Langlands, we have

AG(Σ) = Shv?N (BunG(Σ)), where ? =


dR (de Rham), D-modules,

B (Betti), sheaves of vector spaces,

ét (étale), étale constructible sheaves.

(To be precise, there is a technical modification necessary to make things work: we need to take

sheaves with nilpotent support. For example, if G = Gm, then we have BunG(−) = Pic(−),
and the adjective “nilpotent support” lets us work with locally constant sheaves on Pic

instead of all sheaves.)

4.3. Symmetries of Observables, Hecke Operators.

Let us go back to the finite group setting. Let H be a finite group, so that BunH(−) =
LocH(−). We look at the 4d TQFT Z4

H associated to the finite group H that we talked

about yesterday, so that Z4
H(Σ) = Vect(BunH(Σ)). This category has nice symmetries, and

is acted on by the observables, i.e. by Z4
H(S

2) (a.k.a the Hecke category/category of line

operators), as explained in Lecture 1 yesterday. The action can be obtained by hitting the

bordism in Figure 4.2 with Z4
H (after choosing x ∈ Σ):

Explicitly,

Z4
H(S

2
x) = Vect(•/H) = (Rep(H),⊗) (since BunH(S

2) = LocH(S
2) = •/H),

acts on Z4
H(Σ) as follows:

• For each x ∈ Σ, we have the map

BunH(Σ)
(−)|x−−−→ BunH(x) = •/H

• Given V ∈ Z4
H(S

2) = Rep(H), we can pull it back along the above map to get a

vector bundle Vx on BunH(Σ).
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Figure 4.3. Σ⨿Σ\{x} Σ = Σ⨿Dx ( ) = Σ⨿Dx (Dx ⨿D×
x
Dx) : Σ→ Σ

• Then V acts on E ∈ Z4
H(Σ) by taking

V · E := Vx ⊗ E .

The operators that we will see on the B-side (Spectral side) of the Langlands correspondence

will be exactly like this.

Now we come back to the case where G is a reductive group. Taking

Z(−) = AG(−) = Shv?N(BunG(−)),

(or we can take the product with a circle and take trace of the Frobenius; for a curve over a

finite field, we replace sheaves with automorphic functions.)

To get the Hecke operators, we again take x ∈ Σ, and look at the bordism (Figure 4.2).

This should give a correspondence after taking the space of fields and then we can linearize

to get the Hecke action. But of course, we can’t just do this due to technical difficulties:

I = [0, 1] is not an algebraic curve, so we have to make sense of how to parse this in algebraic

geometry. Since everything is supposed to be locally constant, we can imagine shrinking this

picture, to get something like Σ glued to a raviolo along a disk around x (see Figure 4.3

below).

The raviolo should be thought of as D ⨿D× D and is the algebro-geometric object

playing the role of the 2-sphere. This gives us a correspondence after taking the space of



fields, i.e., the Hecke correspondence:

BunG(Σ⨿Σ\{x} Σ) = Heckex

BunG(Σ) BunG(Σ).

Here an element of BunG(Σ⨿Σ\{x} Σ) is nothing but a pair of G-bundles identified away from

the point x, but can also be thought of as a single G-bundle on Σ along with some local data

associated to the local modification at x. Now we can take automorphic functions/sheaves

and pullback along the first map, multiply/tensor by something in AG( ) and pushforward

along the second map to get an operator/functor. This gives us the Hecke action of AG( )

on AG(Σ).

Example 4.8.

• (Arithmetic setting, from Day 1 Lecture 2) Recall that in the arithmetic context, we

get the action of the Hecke operators by taking the object associated with the number

field, removing a prime (i.e., inverting the prime) and gluing it back in, and now we

have endomorphisms of the thing that we glued back in. The Hecke action in that

setting can be thought of as coming exactly from the bordism above.

• If G = Gm, then BunG( = Dx ⨿D×
x
Dx) = C((t))×/C[[t]]× ∼= Z, and the Hecke

action of AG(Dx ⨿D×
x
Dx) = Shv(Z) on AG(Σ) = Shv(Pic(Σ)) is essentially induced

by the action of Z on Pic(Σ) defined as n : L 7→ L(nx).

5. Day 2 Lecture 2

5.1. A Miracle. We start with Riemann-zeta functions, including all Z. In some books, a

different variable y = x2 is used in the following formulas.

Riemann showed that

(5.1)

∫ ∞

0

xs
∑
n∈Z

e−πn2x2

dxx = 2π−s/2Γ(s/2)ζ(s) = L(χ, 0)

where

(5.2) χ : x 7→ |x|s,

(5.3) ζ(s) =
∏
p

1

1− ps
,

(5.4)
∑
n∈Z

e−πn2x2

= Θ(x),
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the Jacobi theta function, and we denote

(5.5) ζ∞(s) = π−s/2Γ(s/2).

Also, just as a notation dxx = dx
x
.

The above is the Mellin transform, understood as the multiplicative Fourier transform, of

the the theta series.

We note that for the theta function, we have, under the Poisson summation formula

(5.6) θ(x)
PSF←−→ x−1θ(x−1)

and similarly

(5.7) ζ∞(s)←→ ζ(1− s).

We note this is a case of the period function, denoted PX for X = A1 with a G = Gm

action.

We note that there’s no general theory of writting L functions in periods.

In algebraic geoemetry, we have

(5.8) ”Schur Variety”
period∼= ”Schur variety”.

For Adelics, (5.1) is generalized as

(5.9)

∫
[Gm]

|x|s
∑

γ∈F=A1(F )

Φ(γx)dxx

Here, it is an integral over

(5.10) [Gm] = G(F )\G(A) or G(F )\G(A)/G(O).

(5.11) PX(x)
∑

γ∈F=A1(F )

Φ(γx) ∈ S(X(A))

is the period, where S(X(A)) denotes the Schwartz functions, and X is local, and

(5.12) Φ(γx) =
∏
p<∞

1Zp ⊗ e−πx2
∞ ,

with a G(Ẑ) unit action on 1Zp .

Here we use the idele class character

(5.13) F×\A× → C×.

We give the following remarks

(1) The above two differ in that are the automorphic forms vs automorphic functions.

(2) We may consider the above to be a TQFT with two boundaries, one with G(R) action
and one with G(Qp) action.
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(3) For X to be smooth affine over Ov, 1X(Ov) is a basic function.

(4) This integral is a special case of the Construction

(5.14) ⟨Automorphic Forms,Periods⟩ = L- functions

(5) 5.6 can be seen as switching the two subspaces of T ∗A1 = M .That is, under PSF,

(5.15) A1 ←→ O(A1)∗

is invariant in T ∗A1. Here M is a Hamiltonian G space.

Now we may answer the question What makes Riemann’s construction click?

Unfolding the Tate integral (ignore γ = 0)

(5.16)

∫
A1

|x|sΦ(γx)dxx =
∏
p≤∞

∫
Q×

p

Φp(x)d
xx

Fix p <∞, we have

(5.17)

∫
Z=Q×

p /Z×
p

|x|s1Z×
p
(x)dxx =

∑
i≥0

p−is =
1

1− ps
= ζp(s)

This is a MIRACLE!!! Also, here, for i = 0, we get the sum to be 1.

5.2. Mellin transform of the basic function. Let N := S(Qp)
Z×
p . It is a module of the

Hecke algebra

H(Q×
p ,Z×

p ) = C[Q×
p /Z×

p ] = C[Z]

Let 1Zp ∈ N be the constant function on Zp.

Does ζp(s) appear in the module structure of N? The answer is no. N is a free Z module

of rank 1 generated by 1Zp , but consider

N∗ := S(Q×
p )

Z×
p = C[Z]

which contains the element 1Z×
p
and also has an action of H(Q×

p ,Z×
p ) action, the Mellin

transform of 1Z×
p
is 1 but not ζp(s).

ζ starts to appear only when we think of the module as an inner product space. The inner

product ⟨, ⟩ comes from the embedding N ↪→ L2(Qp) which is the same as L2(Q×
p ).

To clarify a pedantic point, when doing integration, we are really considering 1Zp(x)|dx|1/2

where |dx|1/2 is called half density.
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5.3. Plancherel Formula. We want a formula of the form

(5.18) ⟨f1, f2⟩ = ⟨f̂1, f̂2⟩

where f̂ is the Mellin transform of f . The functions live on Q×
p /Z×

p ≡ Z, so their Mellin

transform live on the dual of Z which is S1 ⊂ C, i.e. unitary characters.

It can be computed that

̂1Zp |dx|1/2(z) =
1

1− p−1/2z
|d×z|1/2

here z ∈ S1 corresponds to p−s before and the shift of p−1/2 is due to the half density |dx|1/2.
The formula (5.18) in this case reads

⟨1Zp |dx|1/2, 1Zp |dx|1/2⟩ =
∫
S1

1

(1− p−1/2z)(1− p−1/2z−1)
d×z

And we can also do this with action of Hecke algebra. Let h ∈ H = C[Z], taking h action on

the first term will multiply the integrand by ĥ on the right. Namely

⟨h · 1Zp |dx|1/2, 1Zp |dx|1/2⟩ =
∫
S1

ĥ(z)

(1− p−1/2z)(1− p−1/2z−1)
d×z

=

∫
S1

ĥ(z)ζp(
1

2
+ s)ζp(

1

2
− s)d×z

Hidden here is the dual Gm which is the Langlands dual of the original Gm and the dual

T ∗A1 =: M̌ . When we setup general formalism for L-functions we are going to say that this

zeta function here is associated to the action of this dual Gm action on the same space by

coincidence. But this is just a very special case of the duality.

5.4. Satake isomorphism. Let us now recall the classical Satake isomorphism.

Let HG = H(G(F ), G(O)) be the spherical Hecke algebra of a reductive, connecte, split

group scheme G over F .

Then the classical Satake isomorphism states that HG ≃ HW
T where T = B/N . This is

also equivalent to HG ≃ C[Rep Ǧ] due to the following family of isomorphisms:

(5.19) HG ≃ HW
T = C[X•(T )]

W = C[Ť ]W = C[Ǧ]Ǧ ≃ C[Rep Ǧ].

The latter isomorphism C[Ǧ]Ǧ ≃ C[Rep Ǧ] is given by the character map from the Grothendieck

group of the category Rep Ǧ to the ring of invariants of the adjoint action of Ǧ on itself.

The construction of the Hecke isomorphism will not be reviewed here, we only would like

to note that it uses the HG ⊗HT -bimodule S(N(F )\G(F ))G(O).

Also one can say that this whole picture only becomes completely justified by the geometric

Satake, which turns HG into a semi-simple category and states that it is equivalent to Rep Ǧ.

Moreover, the classical Satake isomorphism does not work very well from the point of view

of analysis. To see that, let us consider the inner products on both sides.



On the right-hand side we have a canonical basis {sλ} of the Weyl characters of the irre-

ducible representations {Vλ} with lowest weight λ, i.e. λ’s are the antidominant cocharacters

of T (the choice to use the lowest weights λ ∈ X−
• (T ) is necessary to make the formulas

below work).

At the same time, on the left-hand side there is an inner product coming from the embedding

HG ↪→ L2(G).

Naturally, the question arises: does the canonical basis on the right-hand side correspond

to an orthonormal basis on the left-hand side? The answer is no.

Denote by ĥ the image of h ∈ HG under the Satake isomorphism and define hλ to be the

elements such that ĥλ = sλ.

There is of course an orthogonal basis on the left-hand side which is naturally parametrized

by the same set {λ ∈ X−
• (T )}: one just needs to take characteristic functions 1g(O)ωλG(O)

of double G(O)-cosets. However, it is not the basis we are looking for: hλ ̸= 1G(O)ωλG(O)

and moreover {hλ} are not orthogonal with respect to the inner product coming from

HG ↪→ L2(G).

Hence we arrive at the following question: what is the natural inner product on HG that

makes hλ’s orthogonal?

To answer it let us first recall what we mean by orthogonality of sλ’s: we can think of {sλ}
as of characters of the maximal compact subgroup Ǧc ⊂ G and then one have

∫̌
Gc

sλsµ = δλµ.

Using Weyl integration formula this can be rewritten as

(5.20)
1

|W |

∫
Ťc

sλ(t)sµ(t)dWeyl(t) =

∫
Ǧc

sλsµ = δλµ

where dWeyl(t) =
∏

α̌∈R(Ǧ)

(1− eλ) is the Weyl measure from the Weyl character formula (here

eλ : T → C× is the map given by λ ∈ X•(T )).

We will use this Weyl measure to build an inner product on G which makes hλ orthogonal.

The previous discussion shows that we need to introduce some non-trivial modification to

it to make it work. It turns our that the right modification is provided by the Macdonald

formula over the group G: we can define

(5.21) ⟨h,1G(O)⟩ = ⟨h ∗ 1G(O),1G(O)⟩ =
1

|W |

∫
TǦ

ĥ(t)∏
α̌∈R(Ǧ)

(1− q−
1
2 eα̌)

dWeyl(t)

The modified measure in the right-hand side is the Plancherel measure for the group.

The modification factor can be rewritten on terms of the (q-character of) adjoint repre-

sentation of Ǧ on it’s Lie algebra. The conceptual explanation for this is provided by the

derived Satake isomorphism.
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6. Day 2 Lecture 3

Let F be either the local fields Qp,Fp((t)), which are 2-dimensional, or the geometric local

field Fp((t)), which is 1-dimensional. Let O be its ring of integers. Let X be a G-variety,

and we may consider X to be a vector space with a group G acting on it. AG(F ) is a

category of G(F )-representations. ΘX ∈ AG(F ) is a function on X(F ). For the relative

Langlands correspondence, there is a Ǧ-variety X̌ and ΘX̌ ∈ BǦ(F ). We want to understand

ΘX as a G(F )-representation in a way that is interoperable on the B-side of the Langland

correspondence.

For now we aim at understanding the unramified part, where the Hecke algebra H := Hecke

(G(F ), G(O)) acts on the G(0)-invariant functions on X(F ). We want to diagonalize the ac-

tion that is compatible with the extra structure from X. Let us first consider a model example.

Example 1: A Model Example

On the A-side, we consider the algebra of compactly supported functions on Z with the

Hecke operator T acting as a shift operator on it. The corresponding B-side is the Laurent

polynomial ring C[z±1]. These two algebras are isomorphic.

On the A-side, we pick a function supported only on 0 which is denoted by δ0. After

diagonalization, it gets mapped to the identity 1 ∈ C[z±1]. The action of T on the A-side

corresponds to multiplication by z on the B-side. The inner product ⟨ , ⟩ on the A-side is

defined as

⟨f, f⟩ =
∫
S1

|f |2 dθ
2π

where f is a function from the A-side. Also, f corresponds to
∑

n⟨f, zn⟩zn ∈ C[z±1] on the

B-side by a Fourier transform, and reversely g ∈ C[z±1] corresponds to
∑

n

∫
S1 g(z)z

n on the

A-side by an inverse Fourier transform.

Take X = A1, G = Gm, then we have A1(F ) = F , and a valuation map

val : F/O∗ ∼−−→ +∞⊔ Z

which is an isomorphism. The A-side is AG(F ) = Cc(X(F ))G(O), and the B-side is C[Ǧ] =

C[C∗] = C[z±1]. More explicitly,

Cc(X(F ))G(O) = {f : bZ −→ bC : f(n) = constant , n≫ 0, f(n) = 0, n≪ 0}

H = C[T±1], T is an element of Gm(F ) of evaluated at 1.

δ0 = 1X(O) = {f = 1, n ≥ 0, f = 0, n < 0}

⟨f, g⟩ :=
∫
F

f(x)g(x)dx =
∑

f(n)g(n)q−n
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T acts on f by Tf(n) = f(n+ 1)q−1/2. If we use the same Fourier transform ⟨f, zn⟩ as we
already mentioned, we will see that δ0 ∈ Cc(X(F ))G(O) gets mapped to 1

1−q−1/2z
̸= 1 ∈ C[z±1].

To force δ0 gets mapped to 1, we need to do a rescaling as follows:

We construct

ez : n 7→ qn/2zn(1− q−1/2z) ∈ Cc(X(F ))G(O)

Then δ0 ∈ Cc(X(F ))G(O) gets mapped to ⟨δ0, ez⟩ = 1 ∈ C[z±1], and f ∈ Cc(X(F ))G(O) gets

mapped to

⟨f, ez⟩ =
∫
S1

|f(θ)|2dµ =

∫
1

(1− q−1/2eiθ)(1− q−1/2e−iθ)

dθ

2π
∈ C[z±1]

That was the model example. Then we would like to investigate what might happen

in a more general case, for example a spherical variety X. On the A-side, we have

Cc(X(F ))G(O), δ0, ⟨ , ⟩, where the Hecke algebra acts on Cc(X(F ))G(O); on the B-side,

we have C[Z] where Z lives above Ǧ/conj, that is, there is a map: Z → Ǧ/conj. The Hecke

operator on the A-side can be diagonalized and corresponds to a multiplication on the B-side,

which implies that each z ∈ Z gives a character H → C. We also have that δ0 ∈ Cc(X(F ))G(O)

corresponds to 1 ∈ C[Z] and ⟨f, f⟩ =
∫
|f |2dµ.

Example 2

Let us consider G = PGLl
2 × PGLr

2 acting on X = PGL2 where l denotes the left

action and r denotes the right action. The Hecke algebra is H = C[Tl, Tr]. To understand

X(F )/G(O) = PGL2(O)\PGL2(F )/PGL2(O), we first observe that PGL2(F )/PGL2(O)
is pictured by vertices of a q + 1-valent tree as shown in the picture. The Hecke algebra

H(PGL2) acts on its right, and the Hecke operator T acts on its function f by

Tf(x) =
∑
y∼x

f(y)

where x is a vertex of the tree, and y ∼ x denotes its adjacent vertex y. Then as for

PGL2(O)\PGL2(F )/PGL2(O), we have the isomorphism:

X(F )/G(O) = PGL2(O)\PGL2(F )/PGL2(O) ≃ Z≥0



0

1

1 1

2 2

2 2

2 2

Therefore functions on X(F )/G(O) are just the radial functions on the tree. It has been

shown that Tl = Tr, we denote it by T . The action of T is pictured by fixed a center vertex

and spin the other vertices around the center. The action of T on the function f is given by

Tf(0) = (q + 1)f(1),

T f(1) = f(0) + qf(2),

T f(n) = f(n− 1) + qf(n+ 1).

We have the following correspondence:

Cc(X(F ))G(O) −→ C[Sl2/conj]

The LHS is A-side and the RHS is B-side. Since Tl = Tr = T (the Hecke operators coincide),

on the B-side Sl2/conj is in the diagonal of Sl2 × SL2/conj.

We can check that 1 on the A-side gets mapped to 1 on the B-side; the Hecke operators

on the A-side gets mapped to the multiplication on the B-side; and

⟨f, f⟩ =
∫
SU2/conj

f · (q − character of SL2) · Haar measure

where SU2 is the maximal compact subgroup of SL2.

7. Day 2 Lecture 4

We will mainly work with a curve Σ over Fq, which is a 2-dimensional arithmetic object

from our point of view. For a curve Ξ over Fq (which is a 3-dimensional arithmetic object),

we can get similar statements by using Σ× S1.

In Day 2 Lecture 1, we described how to turn AG(Σ) into AG(S
2)-module (or an actegory,

if one prefers). Let’s remind ourselves about the construction. Pick a point x ∈ Σ and delete
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a small ball with center at (x, 1
2
) from Σ× [0, 1]. We can now view this as a cobordism from

Σ ⊔ S2 to Σ.

Now we can apply AG to get a functor AG(S
2)⊗AG(Σ)→ AG(Σ). Since AG(S

2) comes

with a monidal structure (introduced in Day 1 Lecture 1), the map AG(S
2)⊗AG(Σ)→ AG(Σ)

equips AG(Σ) the structure of a AG(S
2)-module.

When FG(Σ) = BunG(Σ) we have an issue: BunG is an algebro-geometric object, but

Σ× [0, 1] is a topological space with no structure of an algebraic variety. To fix this, let’s

go further by collapsing the interval in our picture, leaving only a small “bubble” inside Σ

(corresponding to the open sphere we removed earlier).

More formally, this is the non-separated algebraic variety “Σ with a double point”. It can

be equivalently described in either one of the following ways:

Σ ⊔Σ\x Σ = Σ ⊔D (D ⊔D× D).

Here D = SpecFq[[t]] is the formal disk, D× = SpecFq((t)) is a punctured formal disk, both

centered around x. We will call D ⊔D× D a raviolo, denoted by R for simplicity.

Note that the description Σ⊔D (D ⊔D× D) now makes sense in algebraic geometry. We get

the Hecke correspondence

BunG(Σ ⊔Σ\x Σ = Σ ⊔D R)

tt ))
BunG(Σ)× BunG(R) BunG(Σ)
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given by restriction ofG-bundles to the appropriate part of the variety. (The vertex BunG(Σ⊔D
R) is also called the Hecke stack.) This is expected: cobordism between Σ1 and Σ2 should

give correspondence between FG(Σ1) and FG(Σ2). Linearizing this, we obtain a map

AG(R)⊗AG(Σ)→ AG(Σ),

that is, a functor in the 2-dimensional case and an algebra homomorphism if we take 3-

dimensional Ξ instead of Σ. Recall that AG(Σ) = Shv(BunG(Σ)), where Shv are some version

of constructible sheaves: de Rham, Betti, or étale.

To understand Langlands, we will first have to understand AG(R), often called the category

of Hecke operators (or Hecke category for short). For this, we will need the goemetric

Satake.

Remark 7.1. In Day 1 Lecture 1, we had a monoidal structure on AG(S
2) that turned

AG(Σ) into an AG(S
2)-module. We can do the same witht he raviolo. Consider now a raviolo

with three stacked points in the center

X = D1 ⊔D× D2 ⊔D× D3.

This is a (nonseparated) variety with three natural maps p12, p13, p23 to the raviolo R (by

colliding any two of the three stacked points). We define m : AG(R)⊗AG(R)→ AG(R) by
m = p13,∗(p

∗
12 ⊗ p∗23). (As usual, some ∗ here may be !.) Of course, we are omitting some

detail here, as the pushforward at the end does not make sense on the nose (it has domain

AG(X) instead of AG(X)⊗AG(X)).

Similarly to the case of honest S2, it can be shown that AG(R) is an E3-category (there are

algebro-geometric technical details). In particular, AG(R) is a symmetric monoidal category.

It is also possible to add ramifications to the picture. The action is the same: cutting a

ball in the middle. The algebra/category at unramified points is the same. However, at a

ramified point x0 ∈ Σ the sphere cannot leave the interval x0 × [0, 1], so we do not have a

E3-structure.

Let’s introduce some more notations: Denote F = Fq((t)), and O = Fq[[t]] the ring of

integers of F .

Let us describe AG(R) = Shv(BunG(R)) using double cosets. Recall that R = D1 ⊔D× D2.

A G-bundle (up to isomorphism) on R is given by the data of a G-bundle on each Di, plus

a clutching function g : D× = D1 ∩ D2 → G. Bundles on Di are always trivial, and a

clutching function is an element in G(F ) by definition. Also, two clutching functions g, g′

define isomorphic G-bundles if and only if g′ = h1gh
−1
2 for some h1, h2 ∈ G(O). Therefore,

we have just proved that

Lemma 7.2. BunG(R) = G(O)\G(F )/G(O).
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Remark 7.3. Assume G is semisimple. Using the (harder) fact that any principal G-bundles

on a projective Σ trivializes away from a point (due to Harder), one can adapt the argument

to the general BunG(Σ). This will not be relevant to this lecture.

Note that G(F )/G(O) = LG/L+G = Gr is the affine Grassmannian of G by definition.

Hence BunG(R) = G(O)\Gr = Gr is the “G(O)-equivariant affine Grassmannian” of G.

Therefore, the Hecke category AG(R) is

H = Shv(Gr) = ShvG(O)(Gr),

the (derived) category of G(O)-equivariant constructible sheaves on affine Grassmannian. In

the 3-dimensional case, we will get the Hecke algebra H = Fun(Gr(Fq)).

In Day 2 Lecture 2 we discussed the classical Satake isomorphism:

Fun(Gr /Fq) ∼= K0(Rep Ǧ) ∼= O(Ǧ/Ǧ) = O(Maps(S1, ∗/Ǧ)).

We now proceed to categorify the isomorphism, leading to first the geometric Satake corre-

spondence, and then the derived geometric Satake.

Consider the abelian category of G(O)-equivariant perverse sheaves on the affine Grass-

mannian, which we denote by Shv(Gr)♡. Again, we can work with any sheaf theory: étale,

Betti, or de Rham. In the literature, the notation Perv(Gr) is also used. (In fact, by defini-

tion, Perv(Gr) is the heart of the t-structure on the derived category of G(O)-equivariant

constructible sheaves Shv(Gr).)

Theorem 7.4 (Geometric Satake correspondence). There is an equivalence of symmetric

monoidal categories

Shv(Gr)♡ ∼= Rep(Ǧ),

where the monoidal structure on Shv(Gr)♡ (resp, Rep(Ǧ)) is the convolution product of

perverse sheaves (resp, tensor products of representations).

Remark 7.5.

(1) Note that both categories come equipped with natural functors to vector spaces: the

forgetful functor

Rep(Ǧ)→ Vect,

and the cohomology functor

H∗
G(O)(Gr,−) : Shv(Gr)♡ → Vect

(defined using the t-structure). They are called fiber functors, and the Satake equivalence

is compatible with these two functors. But the Koszul’s rule of sign will be necessary if

we use GrVect (graded vector spaces) instead of Vect.

(2) One recovers the classical Satake isomorphism by passing the equivalence to the level of

Grothendeick rings K0. (Or by taking the trace of the identity functors.)
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(3) Being an equivalence of symmetric monoidal categories means, in particular, that the

monoidal structure on Shv(Gr)♡ is commutative. Here is a direct explanation. We saw

that Shv(Gr)♡ is an E3-category. An En-structure on a category consists of multiplications

labeled by the configuration space of points in Rn. As n grows, the multiplications become

more and more commutative. For n = 1, we get monoidal categories. For n = 2, these

are braided monoidal categories (i.e. a⊗ b is isomorphic to b⊗ a, but these isomorphisms

are not necessarily involutive). Finally, when n = 3, the first multiplication necessarily

becomes commutative, so we get symmetric monoidal categories.

By the geometric Satake, for any point x ∈ Σ, we have the (restircted) Hecke action of

Shv(Gr)♡ ∼= Rep Ǧ on AG(Σ) = Shv(BunG(Σ)). Since the choice of x ∈ Σ is arbitrary, to

make things more canonical, we would have to account for all the points. To do this, we can

introduce an adelic version of Rep(Ǧ): the restricted tensor product
restr⊗
x∈Σ

Rep Ǧ.

The action above is, in general, mysterious, so one hopes to “diagonalize” it. For this, we

turn to the action of
restr⊗
x∈Σ

Rep Ǧ on QCoh(LocǦ Σ). Once again, any version of local systems

(de Rham, Betti, étale) will work just fine.

Convention: In this lecture at least, the coefficient field of our spectral theory (i.e. the

naive B-theory, in what we call below) is taken to be C.
To describe the action more precisely, first fix some x ∈ Σ. There is an identification

LocǦΣ = Map(Σ, ∗/Ǧ) (locally constant maps).

Then define evx : LocǦΣ→ ∗/Ǧ by evaluating at x. (Or equivalently, we can restrict any

Ǧ-local system to the point x ∈ Σ, which gives a map LocǦΣ→ ∗/Ǧ.) On the other hand,

every representation defines a vector bundle over a point (or ∗/Ǧ to be precise), so there is

an identification

QCoh(∗/Ǧ) = Vect(∗/Ǧ) = Rep Ǧ.

Thus, given any representation V ∈ Rep(Ǧ), we can pullback along evx to obtain a quasico-

herent sheaf ev∗x V on LocǦΣ, and the action of V on QCoh(LocǦΣ) is given by the tensor

product with ev∗x V . This extends to a genuine action of
restr⊗
x∈Σ

Rep Ǧ.

Remark 7.6. If Σ is defined over Fq, to any x ∈ Σ(Fq) we can furthermore associate a map

LocǦΣ→ Ǧ/Ǧ. This is because the Frobenius morphism plays the role of S1.

Naively, one can propose the geometric Langland’s correspondence as:

Are Shv(BunG(Σ)) and QCoh(LocǦΣ) equivalent (as

(
restr⊗
x∈Σ

Rep Ǧ

)
-modules)?

This turns out to be negative. The key reason is that while the action of
restr⊗
x∈Σ

Rep Ǧ on

QCoh(LocǦ Σ) is locally constant, the action on Shv(BunG(Σ)) is not at all locally constant.
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In order for there to be an equivalence, we need to either replace the right-hand side with

IndCoh(LocǦΣ) (Ind-coherent sheaves), or the left-hand side with tempered sheaves.

Remark 7.7. For each version of sheaf theory (de Rham, Betti, and étale), there is a spectral

action theorem, and they all can be roughly summarized as the following.

Theorem 7.8 (Spectral action). The action of
restr⊗
x∈Σ

Rep Ǧ on AG(Σ) = Shv(BunG(Σ))

factors through the QCoh(LocǦΣ)-action.

Nonetheless, let us (for now) naively study QCoh(LocǦ Σ). Thus we consider the B-theory,
which to a 2-manifold Σ assigns BǦ(Σ) = QCoh(LocǦ Σ), and to a 3-manifold Ξ, the vector

space BǦ(Ξ) = O(LocǦ Ξ). Unlike the A-theory, this defines an actual TQFT. That is, the

output only depends on the topology of Σ or Ξ.

Just like the A-theory, we should first take some time to look at BǦ(R). Since the raviolo

is just a disk with a double point, we can identify local systems on R as a pair of local

systems on the disk D2 together with an identification of them on S1 = ∂D2. Thus, we can

compute

LocǦ(R) = LocǦ(D
2)×LocǦ(S1) LocǦ(D

2),

If we temporarily choose Betti as our sheaf theory, then we get the identifications (of stacks)

LocǦ(D
2) = {π1(D

2)→ Ǧ}/Ǧ = ∗/Ǧ,

LocǦ(S
1) = {π1(S

1)→ Ǧ}/Ǧ = Ǧ/Ǧ

(where in both cases Ǧ acts by conjugation). They lead to the identification

LocǦ(R) = ∗/Ǧ×Ǧ/Ǧ ∗/Ǧ = (∗ ×Ǧ ∗)/Ǧ

Here the point ∗ is included into Ǧ as the identity element. Hence we are using only a

neighborhood of identity when taking the fiber product ∗×Ǧ ∗. It follows that we can replace

Ǧ with its Lie algebra ǧ and obtain the identification:

∗ ×Ǧ ∗ = ∗ ×ǧ ∗ = Ωǧ

where Ωǧ is the loop space of ǧ.

For a general vector space V , ∗ ×V ∗ is the self-intersection of the point ∗. For the usual

algebraic varieties, we would compute

∗ ×V ∗ = SpecC×Spec SymV ∗ SpecC = Spec (C⊗SymV ∗ C).

But we are working in a derived context, which means we should take derived tensor product

in the last step. Writing Koszul complex we see that C⊗L
SymV ∗ C is an exterior algebra in

dimV variables of degree 1. It can be checked that the multiplication on both sides is the

same and we have a natural isomorphism

C⊗L
SymV ∗ C = SymV ∗[1].
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Here 1 is a cohomological shift, in particular SymV ∗[1] is an exterior algebra.

Hence approximately, BǦ(R) is QCoh(LocǦ(R)) = Sym ǧ∗[1]-ModG. Note that the

monoidal structure is not the tensor product of modules; it is convolution coming from

the fact that

LocǦ(R) = ∗/Ǧ×Ǧ/Ǧ ∗/Ǧ
is a fibered product of two copies of the same stack. This can be checked using the pair of

pants definition of the monoidal structure.

Remark 7.9 (Koszul duality). Given an exterior k-algebra Λ equipped with an augmen-

tation ϵ : Λ→ k, consider the functor HomΛ(k,−) : Λ-Mod→ EndΛ(k)-Mod. Here

(1) the monoidal structure on Λ-Mod is given by convolution product: given any two Λ-

modules, push them forward to k-modules via ϵ, take tensor product, and then pull it

back via ϵ;

(2) the EndΛ(k)-action on HomΛ(k,M) is given by precomposition with endomorphisms.

This functor is not an equivalence of derived categories of modules unless we carefully specify

what kinds of modules we’re considering. In fact, it restricts to an equivalence between

coherent Λ-modules and perfect EndΛ(k)-modules.

The Koszul duality above can be upgraded to the category of local operators, establishing

an equivalence

Coh(LocǦ(R)) ∼= Perf(ǧ∗[2]/Ǧ).

One can ind-complete these categories and get an equivalence between

IndCoh(LocǦ(R)) ∼= QCoh(ǧ∗[2]/Ǧ).

This is an equivalence of monoidal categories: The RHS has the usual monoidal structure,

and the corresponding monoidal structure on the left is the convolution operation coming

from the groupoid structure on Ωǧ.

Coming back to our A- and B-theories, we are ready to state the derived version of

the geometric Satake equivalence (one without the heart). We have naively asked for an

equivalence between AG(R) = Shv(Gr) and BǦ(R) = QCoh(LocǦR). As we have said, this

is not correct, and the correct version is the following:

Theorem 7.10 (Derived Geometric Satake). There is an equivalence of symmetric

monoidal categories

Shv(Gr) ∼= IndCoh(Ωǧ/Ǧ) = QCoh(ǧ∗[2]/Ǧ).

Remark 7.11.

(1) As a heads up, on the RHS of the derived Satake, the coadjoint representation shows

up, which is one of the few indications that the moment map (and hence a Hamiltonian

action) will be relevant in our story. This will become a big theme in subsequent lectures.



(2) Similar to the geometric Satake, the categories in the derived Satake also come with fiber

functors. On the affine Grassmannian side, we can take equivariant cohomology

H∗
G(O)(Gr,−) : Shv(Gr)→ H∗

G(O)(pt) -Mod

On the other side, there is a functor

QCoh(ǧ∗[2]/Ǧ)→ O(ǧ∗[2]/Ǧ) -Mod

given by restriction of Kostant slices (which we will not explain here). It follows from

some computations that

O(ǧ∗[2]/Ǧ) = O(ǧ∗[2])Ǧ = Sym ť[2]W = Sym t∗[2]W

= Sym t[−2]W = Sym g[−2]G = H∗
G(O)(pt)

And again, the equivalence is compatible with these two fiber functors.

8. Day 3 Lecture 1

We have not yet spoken about spherical varieties, which have an important role in the

BZSV story. Rather than defining them at the outset, we will motivate them by thinking

about the kinds of varieties that permit us to generalize the harmonic analysis that we have

already seen.

Let G be a split reductive group over a non-archimedean field F . Let O be the valuation

ring with residue field Fq. Let

HG := H(G(F ), G(O))

denote the Hecke algebra, viewed as the space of compactly supported G(O) bi-invariant
functions on G(F ), with multiplication given by convolution with respect to the Haar measure

on G. By the Satake isomorphism, we have an isomorphism

HG
∼−→ C[Rep Ǧ], f 7→ f̂

where the right hand side means the group algebra over the Grothendieck ring K0 of the

tensor category RepC Ǧ.

Now, we upgrade. Let X denote a smooth affine space equipped with a G action. We may

consider a space of compactly supported, locally constant functions C∞
c (X(F )), wich we call

the “Schwartz space” for X, and denote S(X(F )). This is naturally a G(F ) representation.

We consider the space of right-G(O) invariants

S(X(F ))G(O) := C∞
c (X(F ))G(O),

which is a module for the right action of the Hecke algebra HG. (This is called the “spherical”

Schwartz space of X(F ).) But we have also seen that we really should consider this vector

space as an inner-product space:

S(X(F ))G(O) ⊂ (L2(X(F )), ⟨, ⟩)
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where we integrate products with respect to an invariant measure on X(F ). (Alternatively,

we may consider our L2 space to consist of half-densities on X(F ), in which case we would

write a functions f in our spherical Hecke algebra as f |dx|1/2.) We denote

1X := 1X(O)

the characteristic function of X(O). This is our “basic vector” in the Schwartz space. (In

general, this formula for the basic function works well when X is smooth. For non-smooth

varieties, which are outside of our scope here, the basic vector should be related to the IC

sheaf of the loop space of X.)

In previous lectures and exercises, we already encountered two examples of inner products

in the spherical Schwartz space:

Example 8.1. Let X = A1 and G = Gm act by scaling. The set of G(O)-orbits in

A1 are simply the annuli {x ∈ A1(F ) : |x| = q−n}n∈Z, and the spherical Schwartz space

consists of finite combinations of indicator functions of these annuli. The Hecke algebra

is HG ≃ C[Z]
∼−→ C[C∗]. (An unfortunate conflict of notation is inevitable here: C[Z]

denotes the group algebra of Z, while C[C∗] denotes algebraic functions on C∗ = Gm over

C.) We see that the Satake transform is a kind of Fourier transform, which we will denote

h ∈ HG 7→ ĥ ∈ C[C∗]. Then the inner product in S(X(F )) is given as follows in terms of the

Satake transform:

(8.2) ⟨h ⋆ 1X ,1X⟩ =
∫
S1⊂C∗

ĥ(z)

(1− q−1/2z)(1− q−1/2z−1)
d×z

where d×z = dz
z
is the multiplicative Haar measure. Notice that we have seen the q-character

in the homework.

Definition 8.3. The quantity d×z
(1−q−1/2z)(1−q−1/2z−1)

is called the Plancherel density of 1A1 .

Let us recall how this q-character arises on the “dual” (aka the B)-side. In general,

M = T ∗X, so in this case we have M = T ∗A1. Then, dually, we have Ǧ = Gm, which acts

on M̌ , which also happens to equal T ∗A1. The action occurs with weight (1,−1); namely,

λ.(x, y) 7→ (λx, λ−1y) ∈ T ∗A1 = A1 × (A1)∗. (Here we have an exceptional auto-duality on

Gm and T ∗A1; in general Ǧ and M̌ will be quite different from G and M .)

Recall that the q-character is defined by

(8.4) q-tr(z) =
∑
i≥0

q−i/2tr(z|C[M̌ ]i) =
1

det(I − q−1/2z|M̌)
,

where C[M̌ ]i = Symi(M̌∨) = Symi(M̌) (by the linear self-duality of M̌ = A1 × (A1)∗ as a

vector space). The grading here comes from what we shall call the Ggr action, which scales

both A1 factors of M̌ equally (i.e., Ggr acts with weights (1, 1)). Because Ggr is isomorphic

to Gm, this may lead to some confusion; so we emphasize here that there are two different

actions of Gm on M̌ : the action of Ǧ = Gm and the action of Ggr = Gm.
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In summary, we see that the expression 1
(1−q−1/2z)(1−q−1/2z−1)

is the q-character of M̌ = T ∗A1

under the Ggr-grading. We denote this expression by L(z, M̌). In general, the Plancherel

density has the form

Plancherel density = (q−character of symplectic variety M̌)d×z = L(z, M̌)d×z,

and we may re-write (8.2) as

(8.5) ⟨h ⋆ 1X ,1X⟩ =
∫
S1⊂C∗

ĥ(z)L(z, M̌)d×z.

We hope for this formula to hold on a more general class ofG-varietiesX, with corresponding

M = T ∗X and duals ǦX , M̌ . (Observe that only M̌ appears in the formula for the Plancherel

density – in particular, if more than one variety G-variety X gives rise to the same ǦX and

M , then the Plancherel density of their basic vectors are expected to agree.)

Remark. (For the arithmetically-minded.) There are a lot of q1/2’s in our formulae; this

suggests that one must pick a preferred square root of q when working over fields other than

C. This particular ambiguity in the arithmetic setting is resolved by using the so-called

C-group, rather than the L-group. Over C, of course, we may choose the positive q1/2.

Example 8.6. Let X = H and G = H × H, where H is a split reductive group. The

bimodule structure is (h1, h2) ∈ G : x ∈ X 7→ h−1
1 xh2. The Schwartz space is just the Hecke

algebra of H:

S(X)G(O) ∼= HH .

On the dual side, we find Ǧ = Ȟ×Ȟ and ǦX = Ȟ. Then we have an anti-diagonal embedding

ǦX = Ȟ
(C,Id)
↪−−−→ Ȟ × Ȟ = Ǧ, a 7→ (a−1, a)

where C denotes Cartan involution. Thus, the identification of the Hecke algebra under

classical Satake transform becomes:

HG = HH ⊗HH
∼= C[Ȟ]Ȟ , h1 ⊗ h2 7→ ĥ1(z

−1) · ĥ2(z).

Thus the inner product in this case reads

⟨(h1 ⊗ h2) ⋆ 1H ,1H⟩ =
∫
Ȟc

ĥ1(z
−1)ĥ2(z)

det(I − q−1z|ȟ)
dHaar(z)(8.7)

=

∫
Ȟc

ĥ1(z
−1)ĥ(z)L(z, ȟ)dHaarz.(8.8)

Let us clarify the various terms appearing in the integral. We are integrating over a compact

form Ȟc of the dual group Ȟ, and dHaar(z) denotes the Haar measure. We have ȟ = Lie(Ȟ)

and L(z, ȟ) := 1
det(Id−q−1z)

, which denotes the q-character of the adjoint action of Ȟ on ȟ.

Lastly, the grading Ggr-action on ȟ is λ.z 7→ λ2z, the squaring of the usual scaling action

(hence the appearance of q−1 instead of q−1/2 in the denominator). Notice that the integrand

is not Ǧc; it is Ȟc, reflecting the fact that in this example, ǦX = Ȟ, not Ǧ.
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As we have remarked, we have a general expectation that for a sufficiently nice class of

(G,X) (where G ⟲ X), a similar story holds true. Given X, we expect there to exist a dual

group ǦX ⊂ Ǧ, with the following property. We have an action S(X(F ))G(O) ⟳ HG, giving

us a map

(8.9) HG → End
(
S(X(F ))G(O)

)
Now, under the Satake isomorphism HG ≃ C[Rep Ǧ], where C[Rep ǦX ] denotes the group

algebra of the Grothendieck ring K0(Rep ǦX). A representation of Ǧ naturally restricts

to a representation of any subgroup Ǧ′ ⊂ Ǧ; in particular, this gives us a natural ring

homomorphism C[Rep Ǧ]
restriction−−−−−→ C[Rep Ǧ′]. We expect that ǦX is a reductive subgroup

of Ǧ such that the action of HG factors as:

(8.10)

HG EndC

(
S(X(F ))G(O)

)
C[Rep Ǧ] C[Rep ǦX ].

Satake≃

restriction

In other words, we expect the action of the Hecke algebra HG ≃ C[Rep Ǧ] on the spherical

Schwartz space to “factor through” its restriction to C[Rep ǦX ]. (Note that this restriction

map may not be surjective, however.)

We expect the “basic vector” 1X(O) to generate the whole spherical Schwartz space

S(X(F ))G(O) as an HG-module. In fact, we expect more. Let us write C[Rep ǦX ] := HX
G .

We expect that the module S(X(F ))G(O) is free of rank one over HX
G , with a distinguished

generator 1X(O). In other words, we may think of the right vertical map of (8.10) as giving a

canonical isomorphism:

(8.11) HX
G

∼−→ EndHG

(
S(X(F ))G(O)

)
,

or, since we have a distinguished vector in S(X(F ))G(O), we have a natural isomorphism of

vector spaces

(8.12) HX
G

∼−→ S(X(F ))G(O),

sending

(8.13) C[Rep ǦX ] ∋ Triv 7→ 1X(O) ∈ S(X(F ))G(O).

The multiplication on S(X(F ))G(O) inherited from the LHS under this identification comes

from fusion. (Indeed, convolution does not make sense on X for X not a group.)
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Finally, we note that developing a Tannakian formalism for the algebra EndHG

(
S(X(F ))G(O)

)
(or the category of right G(O)-equivariant perverse sheaves on X(F ) under the above identi-

fications) will lead us to the Gaitsgory-Nadler construction of ǦX .

For h ∈ HG, we let ĥ denote its classical Satake transform, which we view (via its trace)

as an algebraic (class) function on Ǧ. Our expectation is that:

(8.14) ⟨1X(O) ⋆ h,1X(O)⟩ =
∫
ǦX,c⊂ǦX

ĥ(z)L(z, VX)dHaarz,

or more generally,

(8.15) ⟨1X(O) ⋆ h1,1X(O) ⋆ h2⟩ =
∫
ǦX,c⊂ǦX

ĥ1(z)ĥ2(z)L(z, VX)dHaarz,

where ǦX,c denotes the real points of a compact form of ǦX ⊂ Ǧ, VX denotes a Ggr-

graded representation of ǦX , and L(z, VX) is an appropriate local L-factor generalizing the

q-character. Observe that the RHS of (8.15) only sees the values of ĥ restricted to ǦX (in

fact, to a compact form of ǦX) whereas by definition ĥ is a function on Ǧ.

The need to include the L-factor – which in turn depends upon the Ggr-grading – to

preserve inner products under the Satake transform, reflects the geometric nature of derived

Satake, which will be discussed in other lectures. The key idea is that inner products become

Hom (or Ext) groups under categorification, and the Ggr-grading corresponds to a shearing

in the derived category of equivariant sheaves on X(F ).

But let us turn to the quesiton of which G-varieties might satisfy the above desiderata. It

turns out that our expectations very much restrict the class of X. Our expectations imply,

in particular, that for all characters χ : HG → C (or, equivalently, all χ ∈ Ǎ//WG(C), where
Ǎ is the dual torus),

(8.16) dimHomHG
(Func(X(F ),C),Cχ) <∞.

For example, if we let X = G, and consider only the left action of G on itself, we have by

Peter-Weyl that

(8.17) Fun(G(F )) =

∫ ⊕
π ⊗ π̃ dπ,

which does not satisfy (8.16) for each character (since dim(π) =∞ for most irreps π).

Claim. Assume G is split. Then finiteness condition (8.16) is satisfied if and only if X is a

spherical variety.

This is how/why the class of spherical varieties enters the BZSV framework.
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Definition 8.18. A normal, irreducible G-variety X is spherical if one (or equivalently any)

Borel B ⊂ G acts with an open dense orbit.

Without loss of generality, we will assume from now on that all spherical varieties are

quasi-affine. This does not reduce generality because we may always reduce to this case –

at the cost of introducing a commuting action GN
m on X. Indeed, say we have a projective

embedding X → PN . Then we consider the usual surjection V ∗ := V \ {0} → PN , for

V = An+1, and replace X with X̃ in the Cartesian diagram:

G×GN
m ⟲ X̃ V ∗

G ⟲ X PN .

For example, we may replace the flag variety G/B (with the left G-action) with the basic

affine space G/N thought of as a G× A-variety (A the maximal torus).

Theorem 8.19. X is a (quasi-affine) spherical G-variety iff F [X] (the ring of regular

functions of X) is multiplicity-free as a G-module.

Proof. ( =⇒ .) Fix B ⊂ G. We will from now on assume that G acts on the right. We

observe that F [X] is a(n infinite-dimensional) representation of G which is locally finite; it

thus decomposes as a direct sum of highest-weight modules Vχ, where χ is a character of B

(i.e., a character of A pulled back to B along the canonical surjection B ↠ A). We wish to

show that Vχ has multiplicity 1. Let fχ denote the highest weight vector in Vχ, thought of as

a function on X. Now, because B acts via χ on fχ, we find that fχ(xb) = χ(b)fχ(x) for all

x ∈ X, b ∈ B. Thus the value of fχ on a B-orbit in X is determined by its value at one point.

However, X has a dense B-orbit by assumption, so fχ is determined uniquely up to scaling

on this dense orbit, and thus on all of X. In other words, any other (B,χ)-eigenvector in

F [X], can only differ from fχ by a scalar, proving that the multiplicity of (B,χ) eigenvectors

in f [X] is 1, proving that the multiplicity of Vχ in f [X] is 1, as desired. □

To study a spherical variety we examine 1) the dense B-orbit, denoted X̊, and 2) the

complement X \ X̊. Firstly, if x ∈ X̊ is arbitrary, X̊ ≃ Bx\B. Note that a different choice of

x ∈ X will lead to a conjugate subgroup of B.

Now, consider the space of rational functions F (X) on X. By density, this is the same as

the space of rational functions on X̊. We now consider the collection of B-eigenfunctions in

F (X), which we denote by F (X)(B). Observe that such functions are invariant under the

(right) action of N . We have:

(8.20) F (X)(B) ≃ F (Bx\B/N)(A).



From this we may define AX , “the Cartan of X,” which is given by the largest quotient of A

which acts faithfully on X̊/N . Observe that this is independent of choice of B and x, because

B and Bx are each determined up to conjugacy and are thus canonically equal mod N in

“the” Cartan (i.e., the maximal torus viewed as a canonical subquotient) of G.

Thus we have a surjection

(8.21) A ↠ AX

yielding a map

(8.22) ǍX → Ǎ

of dual tori. Now, (8.22) is not, in general an injection! It is an injection if and only

ker(A ↠ AX) is connected.

In the next lecture, we will extend ǍX to a reductive group ǦX ; a subgroup of Ǧ with

maximal torus ǍX . This will be the desired dual group of the spherical variety discussed

above.

Let us briefly talk about 2), the complement of X̊ in X. It is a union of B-invariant

divisors. We find that the regular functions on X which are B-eigenfunctions are precisely

those elements of F (X)(B) with positive valuation on the B-divisors in this complement. The

data of the B-divisors and their pairing (via valuation) with F (X)(B) is key to offering a

combinatorial description of spherical varieties.

Example 8.23. Let X = GLn, acted on by G = GLn−1 × GLn on the left and right

respectively. Determining F [X] as a G-module is closely related to the so-called “branching

problem” of computing the restriction πGLn|GLn−1 .

9. Day 3 Lecture 2 (by Akshay Venkatesh)

Typed by: Chun-Hsien Hsu, Weixiao Lu

We have mentioned previously that there should be a matching as follows:

(M = TX) (M̌ = T ∗X̌)

G ↷ X Ǧ ↷ X̌

ΘG(X) ∈ AG(Y )←→ ΘǦ(X̌) ∈ BǦ(Y )

for all arithmetic manifolds Y . The goal of this and the following lecture is to explain

the matching for Y = Fq((t)) by geometrizing the Plancherel measure/Plancherel formula.

We will rewrite the Plancherel measure, so pairings on both sides look like certain hom

spaces(twisted by q-characters), which will suggest an equivalence of categories and motivate
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the matching statement/conjecture. Once we arrive at the matching statement, we will come

back and can look in more depth the Plancherel measure.

Let F = Fq((t)) and O be its ring of integers.

9.1. An example: Gm\PGL2. We start with discussing the Plancherel measure for X =

Gm\PGL2 (acted on the right by G = PGL2) as considered in the second exercise from

yesterday. First, we need to understand how one should think of

X(F )/G(O) = F×\PGL2(F )/PGL2(O).

In the previous lecture, we saw that PGL2(F )/PGL2(O) can be drawn as a (q + 1)-valent

tree. Now we will draw it in a different way so that one can easily describe the F×-action on

the tree. Let us take q = 3, so we are drawing a 4-valent tree:

Then F× acts by vertical translation, and orbits in X(F )/G(O) are represented by distances

toward the spine, so

X(F )/G(O) ∼= Z≥0.

Therefore, one can write down Hecke operators as in the case for PGL2(O)\PGL2(F )/PGL2(O)
as certain linear recurrence operators. Eventually, in the exercise you will show

C∞
c (X(F ))G(O)−̃→C[SL2/conj]

the basic function δ0 = 1X(O) 7→ 1

Hecke operators 7→ Multiplication operators

⟨·, ·⟩ ↔
∫
SU2(R)/conj

| · |2 · (q character of M̌ = T ∗A2) dHaar.

(9.1)

Note that SL2 is the dual group of X (which equals to the dual group of PGL2 in this case)

and SU2 = (SL2)c is the compact form of SL2. What we will do in a moment is to rewrite
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the inner product and the integral geometrically as a measurement of hom spaces between

geometric objects.

9.2. History. But before getting into that, let’s first talk about the history of the matching

problem. Recall that for a local field F , AG(F ) = Rep(G(F )) and ΘG(X) = fns(X(F ))

is some version of representation of functions, and hence is a representation of G(F ), i.e.,

ΘG(X) ∈ AG(F ). While the study of representations over general local fields is more recent,

such a problem (to study how ΘG(X) fits in AG(F )) has been considered for quite a long

time.

When F = R, the Lie group G is compact, and X is a compact G-manifold, this dates back

to Cartan(1929) and Weyl(1934)2. Weyl and his student Peter studied compact Lie group

representations via analysis. They proved that L2(G) can be decomposed into a direct sum

of finite dimensional irreducible G-representations by producing compact integral operators

on G. Later Cartan proved that for a homogeneous G-space X,

L2(X) ∼=
⊕
π

πm(π),(9.2)

where m(π) ∈ Z≥0 is the multiplicities of π in L2(X).

This story is connected to two other things. First, the decomposition (9.2) is closely

connected to studying differential operators on X. For example, for G = SO3 and X = S2,

this decomposition is known for representation theorists and analysts. Because it is a

decomposition into eigenspaces of the Laplace operator; the decomposition gives spherical

harmonic functions. More generally, if D is a differential operator on X commuting with

the G-action, then each eigenspace of D in L2(X) is a G-representation. The most optimal

cases happen when all multiplicities are at most one, so that it is easiest for one to find

eigenfunctions and eigenvalues3 (by Schur’s Lemma, D will act as a scalar on each π). A lot

of generalization later on will have this in mind.

The other thing connected to the decomposition is the study of special functions. Cartan

proved m(π) ≤ 1 when X is a compact Riemannian symmetric space. To study how π

lives in L2(X), he constructed the projection of L2(X) → L2(X)π (the isotypic part of π)

by constructing a G-invariant kernel on X × X (equivalently a function on (X × X)/G),

which equals a zonal spherical function. This observation is quickly generalized over time.

In particular, by the 60s Vilenkin wrote a book4 on this in a more general setting, where

the group G is not necessarily compact and he studied L2(X)→ L2(Y )π for two G-spaces

X and Y when L2(X)π ∼= L2(Y )π ∼= π. In this case, the kernel is a function on (X × Y )/G.

2Weyl, H. “Harmonics on Homogeneous Manifolds.” Annals of Mathematics, vol. 35, no. 3, 1934, pp.

486–99.
3Instead of solving differential equations.
4Vilenkin, N. Ja. Special functions and the theory of group representations. Translated from the Russian

by V. N. Singh. Translations of Mathematical Monographs, Vol. 22. American Mathematical Society,

Providence, RI, 1968. x+613 pp.



His observation was by generalizing this approach one can obtain various cases of special

functions parametrized by representations, which recovers many of classical special functions,

e.g., Bessel functions, hypergeometric functions, and so on in a uniform procedure.

Then Harish-Chandra during 50s to 70s classified representations of a real semisimple

group G and wrote down a Plancherel formula for the group case, i.e., he decomposed L2(G)

as a G×G representation, picked out the basic function δe (which is the dirac measure), and

realized where δe goes in the decomposition. The central goal for Harish-Chandra was the

Plancherel measure (i.e. to study the pair (L2(G), δe)), while the classification was obtained

in the process of reaching his goal. Starting from 60s to 70s, people started to consider the

similar problem for more general spaces. A part of them is analysts who study the Laplace

operator on hyperboloids. Most of generalization was done on symmetric varieties.

Around 2010, in Sakalleridis-Venkatesh5 we proposed that studying the Plancherel measure

for X over a local field is a local analogue of studying X-period of automorphic forms. Our

book made a connection between harmonic analysis and the problem that people have studied

for a long time on automorphic forms. As in previous cases, the multiplicity one assumption6

plays a special role, which was emphasized by Piatetski-Shapiro. This is the main reason

that we have restricted ourselves to consider spherical (more precisely hyperspherical) spaces

as they guarantee finite multiplicities and sometimes multiplicity one. While most of BZSV7

is very algebraic, it is helpful to have L2 intuition to get correct normalization.

9.3. Set up. Suppose one has (9.1) and for simplicity ǦX = Ǧ. For instance, we have seen

this for (G,X, M̌) = (GL1,A1, T ∗A1), (PGL2,PGL2/Gm, T
∗A2).

Let V,W be finite dimensional representations of Ǧ. Let χV , χW be characters of V and W

respectively, and let TV , TW be the associated Hecke operators by the Satake correspondence.

We will rewrite both terms in the identity

(TV δ0, TW δ0) =

∫
G∨

c

χV (g)χW (g) · (q-character of M∨) dHaarg

in a geometric fashion. The left-hand side will be interpreted as the trace of Frobenius on

?, and the right-hand side will be interpreted as the trace of q-action(=dimension if q were

1) on ??. Here ? and ?? are both hom spaces in different categories. This will motivate our

conjecture on the equivalence of categories.

5Sakellaridis, Yiannis; Venkatesh, Akshay. Periods and harmonic analysis on spherical varieties. Astérisque

No. 396 (2017), viii+360 pp.
6The vector space HomG(C

∞
c (X(F )), π) has at most dimension one for any smooth irreducible representa-

tion π of G(F ).
7D. Ben-Zvi, Y. Sakellaridis, A. Venkatesh, Relative Langlands Duality, preprint. Available at

https://www.math.ias.edu/ akshay/research/BZSVpaperV1.pdf.
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10. Day 3 Lecture 3 (Yiannis)

The first goal of the talk is to associate a map

(10.1) SL2 × ǦX → Ǧ

to a spherical G-variety X. This map is motivated from the study of the HG-module

C∞
c (X(F ))G(o), which we expects, for ‘good’ X, an isomorphism

(10.2) C∞
c (X(F ))G(o) ∼= C[Rep ǦX ],

of modules over HG
∼= C[Rep Ǧ]. The map (10.1) is used to described the right-handed side

of this isomorphism. Before explaining the right-handed side, we will first define the dual

group ǦX ↪→ Ǧ associated to X by defining its Cartan subgroup AX and its Weyl group WX .

10.1. Relative Cartan subgroup. Let B be a Borel subgroup of G, X◦ be the corresponding

open B-orbit.

Associated to G, one can define a torus A, called the universal Cartan of G, such that for

any Borel subgroup B together with its unipotent radical N , there is a canonical isomorphism

B/N
∼−→ A. As B acts on X◦, A acts on X◦/N and the action factors through a quotient

AX of A.

The character group X∗(AX) of AX can be associated with the group of B-eigencharacters

appearing in the B-module k(X). Indeed, as X has an open dense B-orbit, the B-

eigencharacters χ ∈ X∗(B) of k(X) are determined by their associated nonzeroB-eigenfunctions

fχ ∈ k(X)(B), which is unique up to scalar by k (i.e. the short exact sequence (10.3)). We

also have

k(X)(B) = k(X◦)(B) = k(Bx\B)(B) = k(Bx\B/N)(B/N) = k(X◦/N)(A),

where the B-orbit X◦ ∼= Bx\B for x ∈ X◦, Bx the corresponding stablizer subgroup.

Under the association of X∗(AX) as the group of B-eigencharacters of k(X), we have a

short exact sequence

(10.3) 1→ k∗ → k(X)(B) fχ 7→χ−−−→ X∗(AX)→ 1

10.2. Little Weyl group. There are three equivalent ways to define/see the little Weyl

group WX for a spherical G-variety X. The last one is the most computable.

10.2.1. From G-invariant valuations. Let V be the set of G-invariant Q-valued discrete

valuations on k(X). Using the exact sequence (10.3), Knop showed that we have an injection

map

V ↪→ Hom(X∗(AX),Q) = X∗(AX)⊗Q =: aX

v 7→ (fχ 7→ v(fχ))
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Proposition 10.4 (Knop, The Luna-Vust theory of Spherical Embeddings). There is a

subgroup WX ⊂ W that stabilizes X∗(AX) ⊂ X∗(A) and such that V is a fundamental domain

for the action of WX on aX .

10.2.2. From GIT quotient of cotangent bundle.

Proposition 10.5 (Knop). For homogeneous, quasi-affine spherical G-variety X, let aX =

Lie AX , a = Lie A then a∗X ⊂ a∗. There is a subgroup WX ⊂ W that stabilizes a∗X , and a

canonical isomorphism

T ∗X � G
∼−→ a∗X � WX .

Furthermore, the map T ∗X → g∗ → a∗ � W factors through the above map.

Example 10.6 (Group case). When X = H,G = H × H acting on X on the right by

h · (h1, h2) = h−1
1 hh2. Then T ∗H � G = T ∗

eH � StabG(e) = h∗ � H and by Chevalley’s

isomorphism h∗ �H = a∗H �WH , where aH is the Lie algebra of the maximal torus in H, and

WH is the Weyl group of H. Thus, we find WH is the little Weyl group of X.

10.2.3. From Knop’s Weyl group action on the Borel orbits. Knop in his paper ‘On the set

of orbits for a Borel subgroup’ defined the following action of WG on the B-orbits of X:

Definition 10.7 (Action of WG on B-orbits of X). Let α ∈ ∆G be a simple root of G with the

corresponding reflection wα ∈ WG. Let γ be a B-orbit in X, Pα ⊃ B be the minimal parabolic

corresponding to α, then wα · γ will be a B-orbit in γPα, defined as follows: γPα/R(Pα) is a

homogeneous spherical Pα/R(Pα) ∼= PGL2-variety. Up to equivalence there are only 4 types

of homogeneous spherical PGL2-variety, and we define the action of wα on the Borel orbits of

each in the following table:

Type Homogeneous spherical PGL2-variety Borel orbits and action of wα

G pt one closed orbit

T Gm\PGL2 two closed orbits and one

open one;

wα permutes the two closed

orbits and fixes the open one

N N(Gm)\PGL2 one closed and one open or-

bit; wα fixes the orbits

U N · S\PGL2 for N =

(
1 a

0 1

)
⊂ S ⊂ B one open and open closed or-

bit; wα permutes the two or-

bits

Together, this defines an action of the Weyl group WG of G on the B-orbits of X.

Definition 10.8. Given a spherical G-variety X, one can associate a parabolic subgroup

P (X) := {g ∈ G|X◦g = X◦} together with its Levi subgroup L(X). We say X is tempered if

P (X) = B.



50 LAWRGE 2024 NOTES

Example 10.9 (Temperedness). The group case is tempered.

The little Weyl group appears under Knop’s action as follows:

Proposition 10.10 (Knop). Under this action, the the stablizer of the open B-orbit X◦ is

WX ⋉WP (X),

where WP (X) is the Weyl group of P (X).

We will use this proposition to compute little Weyl’s groups in some cases of X.

Example 10.11 (Group case). Let X = H and G = H ×H acting on X on the right by

h · (h1, h2) = h−1
1 hh2. Another way to view X is as X = Hdiag\H ×H where G = H ×H

acts by right-multiplication.

By Bruhat decomposition, the B ×B-orbits of X are BwB over w ∈ WH where WH is the

Weyl group of H. The open B ×B-orbit is Bw0B with w0 ∈ WH being the longest element

defined by B ⊂ H.

For a simple root (α, 0) ∈ ∆H×H = ∆H ⊔ ∆H of H × H, the corresponding minimal

parabolic is Pα×B, we consider (Bw0B) · (Pα×B)/R(Pα×B) = R(Pα)\Pαw0B/B. This is

always type U 8 (see the above table). In particular, we know what two Borel orbits that

w(α,0) = (wα, 1) ∈ WH×H = WH ×WH permutes in Pαw0B. Indeed, as Pα = B ⊔BwαB and

w0(α) ∈ Φ− so 9

Pαw0B = Bw0B ⊔Bwαw0B.

Similarly, w(0,α) = (1, wα) ∈ WH×H = WH ×WH permutes Bw0B and Bw0wαB = Bwαw0B

(as wwαw
−1 = ww(α) for any w ∈ W,α ∈ Φ). This implies (wα, wα) fixes the open Borel orbit

X◦ = Bw0B. Furthermore, (w,w′) ∈ WH×H fixes X◦ if and only if w = w′.

As X is tempered so WP (X) = 1, we obtain WX = {(w,w) : w ∈ WH} from Knop’s action.

Example 10.12 (X = PGLdiag
2 \PGL3

2 as PGL3
2-space.). Let B denote the upper triangular

matrices in PGL2. First we compute the open Borel orbit of X, i.e., the largest double

coset in PGLdiag
2 \PGL3

2/B
3. Identify PGL3

2/B
3 with (P1)3 and one can see that the largest

orbit corresponds to the representative x = ([1, 0], [0, 1], [1, 1]) ∈ (P1)3 : since PGL2 acts

transitively on P1, to get a large orbit one needs three distinct points.

First we compute AX by computing the stabilizer Bx. The identification PGL2/B with P1

is given by (
a ∗
c ∗

)
↭ [a, c].

Therefore, after working out some matrix multiplications (note that here B3 acts on the

right), one see that Bx = {1} and hence AX = G3
m.

8One can show the stablizer ofR(Pα)w0B ∈ R(Pα)\Pαw0B/B under the action ofR(Pα)\Pα isR(Pα)\B−∩
Pα, hence we have isomorphisms PGL2/B

− ∼= R(Pα)\Pα/(B
− ∩ Pα)

[g]7→[gw0]−−−−−−→ R(Pα)\Pαw0B/B
9see the proof of Bruhat decomposition from Tits systems
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Now we compute WX . For (1, 1, w), where w is the nontrivial element in WPGL2 , the

corresponding minimal parabolic is B ×B × PGL2. Pick a representative of x in PGL3
2 and

compute the quotient

Y2 = PGLdiag
2 \

((
1 0

0 1

)
B,

(
0 1

1 0

)
B,

(
1 0

1 1

)
B

)
·B ×B × PGL2/B ×B × {1}

= PGLdiag
2 \B × wB × PGL2/B ×B × {1}

∼= PGL2\PGL2

= point.

Therefore, (1, 1, w) stabilizes the open Borel orbit. The situation for the other two simple

roots are similar. One can check that the parabolic associated to X is B3 and thus conclude

that WX = WPGL3
2
.

Example 10.13 (Other examples in the exercises). (1) X = Matn as GLn×GLn-space.

(2) X = SOn\SOn+1 as SOn+1-space.

(3) X = SOn+1 as SOn × SOn+1-space. Expected answer: ǦX = Ǧ.

10.3. Dual group of a spherical variety. The dual group ǦX , viewed as a subgroup of Ǧ,

is determined from knowing its Cartan subgroup AX and its Weyl group WX .

Example 10.14 (Group case). When X = H and G = H ×H then we show ǦX = Ȟ

Example 10.15. When X = PGLdiag
2 \PGL3

2 then ǦX = Ǧ

Example 10.16 (Hecke). When X = Gm\PGL2

10.4. The SL2-term. See BZSV. §4

We have defined i : ǦX → Ǧ. With this, C[Rep ǦX ] is a module over C[Rep Ǧ], where

V ∈ Rep Ǧ acts on W ∈ Rep ǦX by i∗V ⊗W where i : ǦX → Ǧ. However, this is not the

correct module structure giving rise to (10.2). A shift in i is needed, illustrated in the below

example.

Example 10.17 (Whittaker). Let X = pt = G\G. HG acts on C∞
c (X(F ))G(o) = C through

the trivial character χ1 : HG → C. Under Satake’s isomorphism Hom(HG,C) = (Ǎ � W )(C),
χ1 corresponds to qρ ∈ Ǎ(C).

How to interpret this qρ: ρ ∈ ǧ corresponds to ρ = deρ where eρ : Gm → Ǧ, and qρ = eρ(q).

One can associate toX a sl2-triple (h, e, f) that is principal in Ľ(X) ⊂ Ǧ, the Levi subgroup

corresponding to P (X) ⊂ G. This triple commutes with ǦX , defining ι : qh/2ǦX ↪→ Ǧ, which

lifts to SL2 × ǦX → Ǧ. This shift ι of i gives us (10.2).

Example 10.18 (Whittaker). Check that the shifts is correct with respect to the action.

The sl2 triple (h, e, f) is principal, where P (X)
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10.5. Hyperspherical Varieties. The second goal of the talk is to generalize spherical

varieties. This comes the notion of hyperspherical variety. The basic example is the cotangent

space of a spherical variety.

Definition 10.19. A Hamiltonian G-variety M with a commuting Ggr is hyperspherical if it

satisfies the following conditions:

(1) M is smooth and affine.

(2) M is coisotropic as a G-variety.

(3) The generic stabilizers of the G-action on M are connected.

(4) The image of the moment map M → g∗ meets the nilpotent cone (i.e., has nontrivial

intersection).

(5) The grading action is “neutral”. In particular, it is compatible with the squaring

action on g∗.

Remark 10.20. • For (4), If M = T ∗X, then the image of the moment map always

contains the zero section.

• Experiments show that (2) + (3) is dual to (1).

Example 10.21 (When M is not of the form T ∗X). Consider T ∗(N\G), where N is the

unipotent radical of B. We interpret the cotangent space of the quotient via Hamiltonian

reduction, which is defined to be the quotient of the fiber of {0} under the moment map by

N :

T ∗(N\G)
def
= N \\\G = {0} ×N

n∗ T
∗G.

That is, we are looking at cotangent vectors on G that are normal to the N -orbits. Notice

that this space is not affine.

A slight modification is the Whittaker cotangent space. To construct it, first take (h, e, f) an

sl2-triple in g ∼= g∗. We want f to be regular nilpotent in g∗ so that f gives a nondegenerate

character of n. We put the Whittaker cotangent space to be

T ∗((N, f)\G) = {f} ×N
n∗ T

∗G = M.

In this way, M is affine and hyperspherical. Note that it also comes equipped with a Kostant

section

M � G = a∗ � W
Kostant−→ M.

This gives M ∼= (a∗ � W )×G

Theorem 10.22 (Structure theorem of hyperspherical varieties). The hyperspherical Hamil-

tonian G-variety M is built out of the following data:

(G,H, ι, S),

where G is the reductive group G, H is a reductive subgroup of G, ι is a sl2-triple in G, and

S a symplectic representation of G.



The above construction is called the Whittaker indcution, M = WιInd
G
H(S).

For such space M , we expect some dual space M̌ .

In the case of M = T ∗X, X spherical, then we have the correspondence

M̌ ←→ (Ǧ, ǦX , ιP (X), Š)

where Ǧ is the dual group, ǦX is the reductive subgroup associated to X defined earlier, ιP (X)

is the sl2-triple corresponding to P (X), and Š is a symplectic Ǧ-representation determined

(up to isomorphism) by the colors of X, i.e., by the B-stable divisors that are not G-stable.

Noncanonically, we have

M̌ ∼= VX ×ǦX Ǧ, VX = Š ⊕ (ǧ/ǧX)e + ǧ1,

where e comes from the sl2-triple ιP (X) and ǧ1 is the degree 1 part in ǧ.

For an arbitrary sl2-triple ι : sl2 ↪→ g, h induces a grading of g by the eigenvalues of [h,−],
g = g+ ⊕ g0 ⊕ g− , where we always have that f ∈ g−2. If this sl2-triple gives an even

decomposition (i.e., only has even degrees), then under the identification g ∼= g∗, f defines a

character f : g+ → F . In the general case, f defines a character g≥2 ×g≥2 F (the Heisenberg

group).

11. Day 4 Lecture 1, Akshay

11.1. Plancherel formula. Recall that we have two TQFT’s AG and BG∨ . Taking Y :=

Fq((t)), we expect an equivalence of 2-categories: AG(Y)→ BG∨(Y). Given the extra data

of the spherical G-variety X, we have associated boundary theories ΘG,X ∈ AG(Y) and

ΘG∨,X∨ ∈ BG∨(Y). We expect these two 1-categories to be equivalent as well.

We first analyze the decategorified version of the equivalence we want. Take F = Fq((t))

and O = Fq[[t]]. Assume X is a spherical G-variety. Under certain finiteness assumptions,

we see

(11.1) Cc(X(F ))G(O) ∼= C[Rep G∨
X ]

for some group G∨
X ⊂ G∨. For the purpose of this talk, we assume G∨

X = G∨ (this is the

so-called strongly tempered condition in BZSV). The above isomorphism is not only an

isomorphism of modules of H(G(F ), G(O)) ∼= C[Rep G∨], but it also preserves inner product.

Let f, g ∈ Cc(X(F ))G(O), and f̂ , ĝ be their images under (11.1), then we have

(11.2) ⟨f, g⟩ =
∫
G∨

c

⟨f̂ , ĝ⟩ · q-char(G∨ ×Ggr
m ,M∨)dµH .

Here are what the notations mean:

• G∨
c is a compact form of the complex reductive group G∨.

• M∨ is some space with an action of G∨ ×Ggr
m . Usually it is T ∗X∨.

• The q-character onM∨ means the q-character of C[M∨] as a representation of G∨×Ggr
m .

• µH is a Haar measure.
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Under the isomorphism (11.1), the characteristic function 1X(O) should go to the trivial

representation.

Example 11.3. We have computed Plancherel formulas for the following two cases:

(1) G = Gm, X = A1. In this case, G∨ = Gm and M∨ = T ∗A1.

(2) G = PGL2, X = PGL2/Gm. In this case G∨ = SL2 and M∨ = T ∗A2.

11.2. Inner product as trace on Hom spaces. One key observation is that both sides

of (11.2) can be realized as trace of certain operators on some Hom spaces. We assume

f̂ = χV (the character of representation V ) and ĝ = χW . In other words, f = hV ∗ 1X(O) and

g = hW ∗ 1X(O). For simplicity, we call LHS the left hand side of (11.2) and RHS the right

hand side of (11.2).

Notice that if A,B are complex representations of G∨, then χAχB is the character of

Hom(B,A), so

(11.4)

∫
G∨

c

χAχBdµH = dimHom(B,A)G
∨
= dimHomG∨(B,A).

So

RHS =

∫
G∨

c

χV χW (
∑
i

q−
i
2χC[M∨]i)dµH(11.5)

=
∑
i

q−
i
2 dimHomG∨(W,V ⊗ C[M∨]i)dµH(11.6)

= trace(q−
1
2 ,HomG∨(W,V ⊗ C[M∨])).(11.7)

In the equality, we are viewing q−
1
2 as an element in Ggr

m (C) = C∗.

Now we can further get a more symmetric presentation by viewing a C-linear W →
V ⊗ C[M∨] as a C[M∨]-linear map W ⊗ C[M∨]→ V ⊗ C[M∨]. So

(11.8) RHS = trace(q−
1
2 ,HomG∨,C[M∨](W ⊗ C[M∨], V ⊗ C[M∨])).

Let V = V ⊗ C[M∨]. Then it is a O(M∨) module with a G∨ action. So we view it as a

coherent sheaf on M∨/G∨. Similarly we define W . Then

(11.9) RHS = trace(q−
1
2 ,HomM∨/G∨(W,V )).

The Hom is taken in the derived category of quasi-coherent (indcoherent?) sheaves on

M∨/G∨.

The left hand side of (11.2) can be realized as a trace using the sheaf-function correspon-

dence. Recall the following general fact: suppose Z is a variety defined over Fq, and F ,G are

mixed Ql-sheaves on ZFq
, then taking trace of Frobenius one obtains functions f, g on Z(Fq).

We have

(11.10) trace(Fr−1|HomZFq
(F ,G)) =

∑
z∈Z(Fq)

f(z)g(z).
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Note that g is the trace of DG (the Verdier dual of G). For example, if we take F = DG = QlZ
,

the constant sheaf on Z, then the above reduces to the Lefschetz fixed-point formula.

Now let F = Fq((t)) and O = Fq[[t]]. For many nice X defined over Fq, X(F )/G(O)
is the Fq point of some “reasonable algebraic stack” XF/GO. For example, when X = H

and G = H ×H, X(F )/G(O) is the Fq points of the affine Grassmanian GrG, which is an

ind-scheme.

The Hecke algebra HG action on Cc(X(F ))G(O) can be upgraded to an action of the Hecke

category on sheaves on XF/GO. The Hecke category here is the derived category of mixed

Qℓ-sheaves G(O)-equivariant constructible sheaves on GrG. Let ICV denote the perverse

sheaf corresponding to representation V under the geometric Satake isomorphism. Let

δ0 := j∗(QlXO/GO
), where j : XO/GO → XF/GO is a closed embedding (?). Then f, g in LHS

are the functions associated to ICW ∗ δ0 and ICV ∗ δ0, respectively, under the sheaf-function

correspondence.

So we can write

(11.11) LHS = trace(Fr−1|Hom(ICW ∗ δ0, ICV ∗ δ0)).

Here Hom is evaluated in the category of constructible sheaves on XF/GO.

11.3. The local conjecture. The discussion in the previous section strongly suggests an

equivalence of categories (not true, to be corrected):

(11.12) Shc(XF/GO) ∼= QCoh(M∨/G∨).

The equivalence should satisfy the following:

• δ0 should be sent to the structure sheaf O on M∨/G∨.

• Frobenius action on the left should correspond to the action of q
1
2 ∈ Ggr

m on the right.

• The equivalence is compatible with the module structure of the Hecke category, under

the derived Satake isomorphism. On the level of abelian categories, HG acts on

the left by convolution and Rep (G∨) acts on the right by tensor product: for any

representation V of G∨, one can pullback along M∨/G∨ → ∗/G∨ to get a vector

bundle on M∨/G∨. The action of V is by tensoring with this vector bundle.

This equivalence can be seen as matching the boundary conditions as discussed in the

beginning of Section (11.1).

The equivalence above is not correct as stated. Before we mention the correction, let us do

some plausibility check. If the equivalence if correct, we expect the following isomorphism:

(11.13) HomShc(XF /GO)(δ0, δ0) ∼= HomM∨/G∨(O,O).

The left hand side equals H∗(XO/GO). Notice that GO/G is pro-unipotent and therefore

contractible, it doesn’t contribute to the cohomology. Similarly XO contracts to X(Fq). We



have

(11.14) H∗(XO/GO) ∼= H∗
G(X(C)).

On the right hand side, we have

(11.15) HomQCoh(M∨/G∨)(O,O) ∼= C[M∨]G
∨
.

So we should check:

(11.16) H∗
G(X(C)) = C[M∨]G

∨
.

Example 11.17. Consider the case G = Gm, X = A1, G∨ = Gm and M∨ = T ∗A1. Then

H∗
G(X) = C[ξ2], where ξ2 lies in cohomological degree 2. Recall λ ∈ G∨ acts on (x, y) ∈ T ∗A1

by (λx, λ−1y). We have C[M∨]G
∨
= C[xy]

Example 11.18. Consider the case G = PGL2, X = PGL2/Gm, G
∨ = SL2 and M∨ = T ∗A2.

Then H∗
G(X) = H∗

Gm
(pt) = C[ξ2].

On the other hand, realizing M∨ = T ∗A2, and SL2 acts by left multiplication, we have

C[M∨]G
∨
= C[det].

In both examples we have checked the algebras are isomorphic, but we have to assign the

correct grading on the right hand side. On the categorical level, there is a procedure called

shearing and the corrected conjecture is the following:

(11.19) Shc(XF/GO) ∼= IndCoh(M∨/G∨)♮.

12. Day 4 Lecture 2

In this light lecture, we will switch to the global setting and give some motivation and

history. We will begin by finishing one thing that we didn’t get to in the previous lecture. By

following the reasoning we went through, one can even obtain a general unramified Plancherel

formula.

Let F be a local field. The “package” (C∞
c (XF )

GO , δe, ⟨−,−⟩) can then be described, i.e.,

the Hecke action on it can be diagonalized, completely in terms of the dual M̌ . We will

describe the answer under a slight simplifying assumption, namely in the case when the

Gm-action on M̌ , which is always of the form Ǧ ×ǦX
VX for some ǦX-representation VX ,

comes entirely from an action on VX alone. Then, there is an isomorphism

C∞
c (XF )

GO
∼=−→ C[ǦX ]

ǦX

which sends δe to the constant function 1, and which sends the inner product ⟨−,−⟩ to the

integral

⟨−,−⟩ 7→
∫
Ǧcompact

X

⟨−,−⟩ · (q-character of VX) · dHaar.

Recall that the product of the Haar measure with the q-character of VX is called the Plancherel

measure.
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That’s all for the local setting; now we will go to the global setting. Our theories AG and

BǦ will be evaluated on an arithmetic manifold, where Y is either a curve over Fq or a curve

over the algebraic closure Fq. In the first case, AG(Y) and BǦ(Y) are both vector spaces; and

in the second case, both are categories. The data of G ⟲ X and Ǧ ⟲ X̌ (really, one should

think of these as the data of M and M̌), define objects ΘG,X ∈ AG(Y) and ΘǦ,X̌ ∈ BǦ(Y). In
this lecture, we will focus only on defining ΘG,X ∈ AG(Y). (Everything works in the number

field case too, but I will stick to the function field case for ease.)

We have a curve Σ over Fq, and the vector space AG(Σ) is the vector space of functions on

the set [G] of G-bundles over Σ. These G-bundles are defined over Fq. One can understand

the set [G] of G-bundles over Σ either adelically, or geometrically. If K is the function field of

Σ, then [G] can be written as G(K)\G(A)/G(Ô); a point of [G] will be denoted by [g], and

for each closed point s ∈ Σ, we will write gs ∈ G(Ôs) to denote the corresponding element.

The period function ΘG,X ∈ AG(Σ) can be defined in three different ways.

• Geometrically: ΘG,X([g]) is the number of sections of the X-bundle associated to [g].

Recall that this X-bundle is just (X × [g])/G.

• ΘG,X([g]) is the number of sections x ∈ X(K) such that for all closed points s ∈ Σ,

the section xgs belongs to X(Ôs). To see that this is the same as the number from

the first bullet, note that if you restrict this X-bundle to the generic point of the

curve, it is just X (because the bundle is locally trivial); so a section of the X-bundle

associated to [g] is, generically, just a point x ∈ X(K). Asking that this section is

globally defined is equivalent to asking that x not have any poles at any closed point

of Σ, i.e., that it lie in X(Ôs).

• Arithmetically: ΘG,X([g]) is the sum
∑

x∈X(K) Φ(x · g), where Φ is the characteristic

function of
∏

X(Ôs) inside X(A).

Let’s work out some examples of this. Take Σ to be P1, and G to be Gm. In this case,

all Gm-bundles on P1 are just specified by an integer (namely, n corresponds to O(n)), so
[G] = Z. Now, let us take X = A1. Taking the associated X-bundle just amounts to taking

the total space of the line bundle, so that ΘG,X =: ΘX just sends n to the number of global

sections of O(n). In other words:

ΘX(n) =

qn+1 n ≥ 0,

1 n ≤ −1.

One important remark is that in our paper, we need to normalize the period function correctly.

So we in fact use the slight variant of the period function which, in this case, multiplies the

above function ΘX by a factor of q−n/2. So, this rescaling sends

n 7→

qn/2+1 n ≥ 0,

q−n/2 n ≤ −1.
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Observe that now, it is symmetric about n = −1. (This normalization of the period function

is motivated by L2-theory.)

Let us do one more example. Suppose we take a subgroup H ⊆ G. In this case, we can

take X = G/H, and consider the “pairing” of ΘX := ΘG,X with some function f : [G]→ C.
(When G = PGL2 and H = Gm, this pairing was computed by Hecke in the 1930s.) By the

“pairing”, I mean:

• In terms of the adelic uniformization, the integral
∫
G(K)\G(A)ΘX(g)f(g)dg. Here, I

choose the Haar measure to make G(Ô) have volume 1.

• In terms of the geometric picture, the sum
∑

[g]∈[G]
1

#Aut([g])
ΘX(g)f(g). For instance,

in the Gm-case, the measure of the point [O(n)] is 1/#Gm(Fq) = 1/(q − 1).

Both of these give you the same number. A good exercise is to check that, when X = G/H,

either of these pairings can be rewritten in terms of H. Namely:∑
[g]∈[G]

1

#Aut([g])
ΘX(g)f(g) =

∑
[h]∈[H]

1

#Aut([h])
f(h),

∫
G(K)\G(A)

ΘX(g)f(g)dg =

∫
[H]

f(h)dh,

and all of these numbers are equal, and give you ⟨ΘX , f⟩. This is a helpful exercise.

Now, we will look at the history of the study of such pairings ⟨ΘX , f⟩, and why number-

theorists are interested in them to begin with. For this, let us go all the way back to the

Riemann zeta function ζ(s) =
∑∞

n=1 n
−s. This has three properties, which are collectively

extremely rigid:

• It has an Euler product
∏

p(1− p−s)−1.

• It has an analytic (meaning meromorphic) continuation.

• It has a functional equation relating the values at s and 1− s.

It is not so easy for a function to have all three such properties; we will just refer to such as

“L-functions”. People started to discover such L-functions, and all of them had to do with

arithmetic. There were functions associated to Dirichlet characters, number fields, Galois

representations, and later elliptic curves. But it was hard to prove that these functions had

all of these properties! Importantly, all such (expected) L-function had to do with objects of

arithmetic nature.

This is where Hecke comes in, around 1936. He discovered a completely different way

of producing such functions from holomorphic modular forms which were eigenfunctions

of what we now call Hecke operators. Namely, given f(q) =
∑

anq
n, you can write down

the L-function L(f, s) =
∑

ann
−s. The property of having an Euler product goes back to

Ramanujan, but the proof that this has an analytic continuation and a functional equation

was due to Hecke. He knew that Riemann’s proof of the functional equation of the zeta

function used the θ-function, and this was probably important motivation for him. Hecke’s
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crucial observation was that if you view the holomorphic modular form f as an automorphic

form f : [PGL2]→ C, then one has∫
[Gm]

f(h)|h|sdh = L(f, s).

Don’t worry about the character |h|s in this expression; up to this issue, it is precisely the

pairing of f with the period function ΘPGL2,PGL2/Gm . This is amazing, because it is an

analytic, as opposed to arithmetic, source for such L-functions.

After Hecke, people started discovering several other ways to produce L-functions through

analytic methods. The next example, in the 1940s, was due to Rankin and Selberg. They

produced an L-function from a pair f, g of Hecke eigenforms. If we write f(q) =
∑

anq
n and

g(q) =
∑

bnq
n, then the Rankin-Selberg L-function was

∑
n≥1

anbn
ns . That it has an Euler

product is not so hard, but that it has an analytic continuation or functional equation is

completely nonobvious. The way that they proved these things was, in our language, given

by pairing f ⊠ g (viewed as an automorphic form for G = GL2 × GL2) with ΘG,X where

X = GL2 × A2. Here, the two factors of GL2 act on GL2 on the left and right, and only

the second copy of GL2 acts on A2. Rankin’s motivation was not to study prime numbers;

instead, he was interested in bounding the absolute value |an|. This proof was very important,

because it provided Deligne with inspiration for proving some key inequalities in the proof of

the Weil conjectures.

After this, there was a while before there were more examples. But Godement and Jacquet,

around 1970, produced an L-function starting from a Hecke eigenform f on GLn. Again,

they proved that it has an analytic continuation and functional equation by proving that this

L-function is given by pairing f with ΘG,X , where G = GLn ×GLn and X = Matn. In all of

these papers, what you will find are integrals and manipulations with them; it was much later

that the conceptualization as the study of a certain space came in. After this, the theory of

automorphic forms took up, and many, many generalizations of the above were found.

Around the 1960s, Langlands proposed that all L-functions (including all arithmetic ones)

come from automorphic forms. This was important because there were a lot of examples

and tools to work with L-functions coming from automorphic forms, but almost none for

arithmetic ones. This became a very strong motivation to develop the theory of L-functions

for automorphic forms.

Let us emphasize that all these examples due to Hecke, Rankin-Selberg, Godement-Jacquet,

etc., are of the following form. One considers the pairing ⟨f,ΘG,X⟩, which turns out to be

either 0, or gives an L-function related to f . It turns out that the conditions under which

the pairing ⟨f,ΘG,x⟩ was nonzero are nicely packaged by the dual Hamiltonian Ǧ-space

M̌ . In more detail, whether this pairing vanishes has to do with the dual group ǦX ; and

the L-function that one obtains when the pairing is non-vanishing has to to with VX , the

representation that appeared in the Plancherel measure. Also, ΘG,X only depends on the



cotangent bundle M = T ∗X. So a large number of examples are packaged by a pair M , M̌ .

However, not all known examples fall within the framework of hyperspherical duality. This is

the nicest class of such examples, but it would be desirable to have some sort of extension of

the framework.

13. Day 5 Lecture 1

13.1. Recap. Recall that we want to identify two theories, aka. automorphic theory (of

G) and spectral theory (of Ǧ) in various settings (global arithmetic; global geometric, local

arithmetic; local geometric). In particular, boundary theories, e.g. L-functions and periods

should match. For example, Fargues-Scholze formulation of local Langlands correspondence

over arithmetic local field (e.g. Qp) shares simlarity with geometric Langlands over a curve.

In the local arithmetic setting, recall that C∞
c (XG)

GO corresponds to the dual space M̌

with Ǧ action. Categorifying it, we have local geometric conjecture, relating

Shv(XF/GO) ∼= QCoh((M̌/Ǧ).

Example 13.1. For the group case where G×G acts on X = G, on the dual side we have

Ǧ × Ǧ acting on X̌ = Ǧ and hence M̌ = T ∗Ǧ ∼= Ǧ × ǧ∗. The local geometric conjecture

recovers the derived geometric Satake equivalence: the A-side is Shv(GO\GF/GO), and the

B-side is QCoh((ǧ∗/Ǧ). The B-side is identified with the assignment of TQFT to the ravioli

via Koszul duality. More precisely we have

BǦ(D
∐
D×

D) = QCoh!(ǧ[−1]/Ǧ) ∼= QCoh((ǧ∗/Ǧ).

Here the first identity is what we get from the field description of the TQFT and the last

equivalence is Koszul duality.

Today our goal is to discuss global geometric conjecture and then understand the arrows

connecting global geometric conjecture to local geometric and global arithmetic conjecture.

13.2. Setup. Fix Σ a smooth projective algebraic curve over C or Fq.

There is a group G acting on X and we attach a period sheaf PX ∈ Shv(BunGΣ). Dually

Ǧ acts on X̌ and we attach to it an L-sheaf LX̌ ∈ QCoh!(LocǦΣ). Unramfied geometric

Langlands match the two categories and the relative Langlands further match the objects,

aka. the period sheaf should match the L-sheaf.

Remark 13.2. Relative Langlands duality provides us with much more matching of objects

than that was used in the formulation and proof of GLC.

13.3. BunX
G and period sheaf. Consider BunX

G = BunX
G (Σ) = Maps(Σ, X/G), which is

a stack classifying G-bundles on Σ with sections of associated X-bundles. This stack is

equipped with a natural map

(13.3) π : BunX
G → BunG.
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Definition 13.4. We define period sheaf by the formula

PX := π!kBunXG
.

Example 13.5. Take G = Gm and then

BunG = PicΣ ∼= Z× JacΣ×BGm.

Example 13.6. Consider BunSL2(P1). It is not compact. It is connected, and its points

correspond to O ⊕ O, O(1) ⊕ O(−1),. . . . These get equipped with the topology such that

O(a)⊕ O(−a) is in the closure of O(b)⊕ O(−b) if 0 ≤ b ≤ a.

13.4. Local Systems. Dual to BunG, we consider

(13.7) LocX̌ǦΣ := Mapskl.c.(Σ, X̌/Ǧ),

which is equipped with a map

(13.8) π̌ : LocX̌ǦΣ→ LocǦΣ := Mapskl.c.(Σ, pt/Ǧ),

where the subscript k-l.c. means locally constant maps.

Example 13.9. For G = Gm, then

(13.10) LocǦ = BGm × (Gm)
2g × (derived stuff),

where g is the genus of Σ. More canonically, the factor (Gm)
2g can be thought as H1(Σ,C×).

13.5. L-sheaf and its fibers. We define L-sheaf corresponding to a Ǧ-space X̌ and study

its fibers. Recall that we had a map π̌ : LocX̌Ǧ → LocǦ.

Definition 13.11. We define L-sheaf by the formula LX̌ := π̌∗ωLocX̌
Ǧ

∈ QC!(LocǦ).

Remark 13.12. We have an isomorphism between sheaves ω
LocX̌

Ǧ

and O
LocX̌

Ǧ

.

Remark 13.13. Why do we use the dualizing sheaf instead of the structure sheaf? It is

roughly because the category IndCoh privileges dualizing sheaf whereas the category QCoh

privileges structure sheaf.

Remark 13.14. We have to normalize the L-sheaf, which on the level of functions amounts

to normalizing L-functions to make sense of inner product.

Given a local system E ∈ LocǦ, the fiber of π̌ at E has the following equivalent descriptions:

(1) locally constant sections of the associated X̌ bundle of E,

(2) E-twisted locally constant maps Σ→ X̌,

(3) π1(Σ)-fixed points on X̌.

In the last description, we are using the action of π1(Σ) on X̌ given by the pullback of

the action of Ǧ on X̌ via E : π1(Σ) → Ǧ. Indeed, all of the descriptions above should be

interpreted in the derived sense. Denote the fiber of π̌ at E by π̌−1E.
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Remark 13.15. We might ask: given a group H acting on a space Y , what does it mean

by its derived fixed locus? Classically, the fixed locus can be interpreted as the space of

maps from pt/H to Y . We make sense of the derived fixed locus by considering the derived

mapping space from pt/H to Y .

From its definition, given a local system E, the fiber of LX̌ at E is RΓ(π̌−1E,ω). Hence

LX̌ is coherent on the locus where RΓ(π̌−1E,ω) is finite-dimensional, or equivalently if the

number of (classical) fixed points is finite. This can also be phrased as (classical) fixed points

being isolated.

Example 13.16. Suppose X̌ is a linear representation of Ǧ. Having isolated fixed points

is equivalent to not having a trivial subrepresentation of π1Σ acting on X̌. This condition

determines the locus on LocǦ where the L-sheaf LX̌ is coherent.

13.6. Global geometric conjecture. Now we state the BZSV global geometric conjecture.

We first state a naive version.

Conjecture 13.17 (Naive global geometric conjecture). The period sheaf PX and L-sheaf

LX̌ match under the geometric Langlands correspondence:

LG : Shv(BunG)→ QC!(LocǦ),

PX 7→ LX̌ .

Recall that we had three choices of sheaf theory on the A-side, namely de Rham, Betti, and

étale. Except for the de Rham setting, this conjecture should be modified: for the statement

of GLC, sheaves on the A-side should satisfy a certain condition N . This is natural from the

TQFT point of view. From the local constancy axiom of TQFT, the action of Hecke category

(which is AG(Dx

∐
D×

x
Dx)) on the category of sheaves on BunG (which is A(Σ)) should be

locally constant on x ∈ Σ(F ). Not every sheaves over BunG satisfy this requirement, hence

we should replace the A-side and consider a subcategory ShvN (BunG) to make this local

constancy work. Hence the modified statement of GLC for Betti or étale setting would be an

equivalence

LG : ShvN (BunG)→ QC!(LocǦ).

Remark 13.18. This conditionN is not needed in de Rham setting, because every D-modules

are locally constant in a weaker sense.

The following two examples of G = Gm illustrate the necessity of the condition N from

two perspectives. For both of the examples, we work on the Betti setting.

Example 13.19 (TQFT). Let G = Gm. We have BunG = Pic. Given n ∈ Z and a point

x ∈ Σ(F ) we have an automorphism

mn
x : Pic→ Pic, L 7→ L(nx).
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Consider the weight n representation of RepG∨
m viewed as an object in the spherical Hecke

category at the point x ∈ Σ(F ). The action of such an object on Shv(Pic) is identified with

(mn
x)∗ : Shv(Pic)→ Shv(Pic).

The space Pic has Z-many components labeled by degrees, and from the local constancy

condition on the Hecke action, we see that F ∈ AG(Σ) should be locally constant on each

component.

Example 13.20 (Direct computation). Recall that Pic = Jac×(· · · ) and LocGm = H1(Σ,C×)×
(· · · ), where (· · · ) are some extra factors. For simplicity, let us discard the extra factors from

both sides. We have

QCoh(H1(Σ,C×)) = O(H1(Σ,C×))−mod .

Fourier transformation gives us an isomorphism O(H1(Σ,C×)) ∼= C[H1(Σ,Z)] where the

right-hand side should be understood as a group algebra. Hence we arrive at

QCoh(LocGm)
∼= H1(Σ,Z)−mod .

On the other hand, H1(Σ,Z) = π1(Jac), and therefore we confirm the equivalence

Loc(Jac) ∼= QCoh(LocGm).

From this, we conclude that GLC forces sheaves on the A-side to be locally constant. This

agrees with our conclusion from the previous example.

So far, we have modified the GLC. To state the BZSV conjecture we still have to make

another modification, because period sheaves do not necessarily belong to the category

ShvN (BunG). Still, we have a Beilinson projector (−)spec : Shv(BunG) ↠ ShvN (BunG) so we

might expect the following.

Conjecture 13.21 (Global geometric conjecture). The projection of period sheaf PX and

L-sheaf LX̌ match under the geometric Langlands correspondence:

LG : ShvN (BunG)→ QC!(LocǦ),

(PX)
spec 7→ LX̌ .

Remark 13.22. We ignored some technical issues such as normalization and duality in-

volution. A more precise form of this conjecture can be found in Conjecture 12.1.1 of

BZSV.

13.7. More on the Beilinson projector. To explain the necessity of the Beilinson projector

for period sheaves, let us look at some examples of period sheaves and L-sheaves.
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Example 13.23. If we let X = pt, the case which we refer as Neumann boundary condition,

the map π : BunX
G → BunG is an identity, therefore Ppt = kBunG

. If we let X̌ = pt, then

in the same way Lpt = ωLocǦ
. Note that there is a trivialization of ωLocǦ

coming from a

symplectic structure of LocǦ. This symplectic structure is canonically defined using a Killing

form of g∨.

Example 13.24. If we take the G-space X = G, the case which we refer to as Dirichlet

boundary condition, the map π : BunX
G → BunG is an inclusion pt ↪→ BunG of the trivial

bundle. Hence PG is the skyscraper sheaf at the trivial bundle. In the same way, LǦ is a

skyscraper sheaf at the trivial local system.

Remark 13.25. If G is abelian, those two examples are dual to each other through the

Fourier transform.

In the Example 13.24, the period sheaf PG is a skyscraper, hence it is far from being

locally constant. This tells us that period sheaves do not necessarily live in the category

ShvN (BunG), explicating the necessity of the Beilinson projector.

Remark 13.26. The L-sheaves do not generally land in the category IndCohNilp(LocǦ).

Note that we are using a ‘bigger’ version of GLC allowing every ind-coherent sheaves on the

B-side.

The condition N and the Beilinson projector may seem like an unpleasant feature of global

geometric conjecture. However, measurements in ShvN that we are interested in can be

lifted to measurements in Shv via adjunction. There is an adjunction between the projection

(−)spec : Shv(BunG) ↠ ShvN (BunG) and the inclusion ShvN (BunG) ↪→ Shv(BunG). In the

Betti setting, the projection is left-adjoint to the inclusion, while in the étale setting the

projection is right-adjoint to the inclusion. Using this adjunction, in the Betti setting we

have

(13.27) HomShvN ((PX)
spec,F) = HomShv(PX ,F)

for a period sheaf PX and a Hecke eigensheaf F . An analogous statement can be made for

étale setting if we consider Hom spaces the other way around. Note that in number theory,

the pairing between period and automorphic function is the measurement we are mainly

interested in on the A-side. Hence number theory does not sense the difference between the

categories Shv and ShvN .

We end the discussion of the Beilinson projector giving a simple example.

Example 13.28. Recall from Example 13.24 that PG = i!k where i : pt ↪→ BunG is an

inclusion of the trivial bundle. As pointed out earlier, this doesn’t satisfy the condition N
and therefore needs to be projected to the category ShvN . The idea is to replace pt with a

homotopy equivalent space C (i.e., a contractible space) so that we can take !-pushforward
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along a map j : C → BunG instead. If we choose the replacement C so that the map

C → BunG is a fibration, then the sheaf j!kC is locally constant, hence lies in ShvN . We let

(PG)
spec = j!kC .

13.8. Sanity check for the Iwasawa-Tate case. One of the most important examples

of relative Langlands duality is the Iwasawa-Tate case, where G = Gm acts on X = A1 and

Ǧ = Gm acts on X̌ = A1. The proof of Conjecture 13.21 for this case was given in Theorem

6.1.2 of Feng-Wang “Geometric Langlands duality for periods”. We wouldn’t go through its

proof, but instead do a simple sanity check by comparing Hom spaces of both sides. In this

subsection, we work on the Betti setting exclusively. A more detailed account of this sanity

check can be found in Sect. 12.2.3 of BZSV.

Let E be a non-trivial Gm-local system on Σ. It determines a skyscraper sheaf CE ∈
QC!(Pic). Under the GLC, it corresponds to a rank one C-linear local system FE on Pic.

The local system FE has a property that for each r ≥ 0, its pullback under the map

ϕr : Σ
r → Pic, (P1, · · · , Pr) 7→ O(P1 + · · ·+ Pr)

is E⊠r. Here E is the rank one C-linear local system associated to E. Hence Conjecture 13.21

predicts

HomShvN ((PA1)spec,FE) ∼= HomQC!(LocGm )(LA1 ,CE).

From the adjunction (13.27), it is equivalent to

(13.29) HomShv(PA1 ,FE) ∼= HomQC!(Pic)(LA1 ,CE).

Now we give a proof of this.

Using adjunction, the right-hand side of (13.29) is the dual of fiber of LA1 at E. As

explained in Subsection 13.5, the fiber of LA1 at E is RΓ(π̌−1E,ω) where π̌−1E is the derived

fixed locus of the action π1(Σ) on A1. From Remark 13.12, the derived section of dualizing

sheaf is identified with the function algebra of π̌−1E. Combining these,

(13.30) HomQC!(Pic)(LA1 ,CE)
∼= O(π̌−1E)∗.

Since we assumed that E is non-trivial, the derived stack π̌−1E has a single classical point:

a zero section. Hence its function algebra is determined by tangent complex. The tangent

complex is H1(Σ, E)[−1] and hence

(13.31) O(π̌−1E) = Sym(H1(Σ, E)∗[1]).

Combining (13.30) and (13.31) we get

(13.32) HomQC!(LocGm )(LA1 ,CE)
∼= Sym(H1(Σ, E)[−1]).

Now we compute the left-hand side of (13.29). The map π̌ : BunA1

Gm
→ Pic admits a section

i : Pic→ BunA1

Gm
which amounts to choosing a zero section of the associated A1-bundle. The

section i is a closed embedding, and we may consider the complementary open embedding



j : BunA1,0
Gm
→ BunA1

Gm
. Note that the open substack BunA1,0

Gm
classifies a pair (L, s) where

L is a line bundle over Σ and s is its non-trivial section. Taking zeros of the section with

multiplicity, this stack is identified with the stack SymΣ of effective divisors. Hence we have

a distinguished triangle

(13.33) CPic → PA1 → j!CSymΣ.

We claim that HomShv(CPic,FE) = 0. Recall that Pic consists of Z-many copies of

Jac×BGm (Example 13.5) and that Hecke operators permute those copies (Example 13.19).

Since the local system FE is a non-trivial Hecke eigensheaf, the previous facts tell us that

FE is non-trivial on each copy of Jac×BGm. Hence for the proof of the claim, it suffices

to show that HomJac×BGm(CJac×BGm
,F) = 0 for any non-trivial rank one local system F

on Jac×BGm. This is equivalent to a vanishing statement of group cohomologies of the

monodromy representation of F . Since Jac is a torus, the claim follows from the fact that

the group cohomology groups H∗(Λ, kχ) vanish for an free abelian group Λ of finite rank and

its non-trivial character kχ.

Combining the claim with the distinguished triangle (13.33) we get

HomShv(PA1 ,FE) ∼= HomShv(j!CSymΣ,FE).

Using adjunction and the fact that j is an open embedding, this can be rewritten as

(13.34) HomShv(PA1 ,FE) ∼= RΓ(SymΣ, j∗FE).

Recall that FE pulls back to E⊠r via ϕr : Σ
r → Pic, hence

RΓ(Σr, ϕ∗
rFE) = RΓ(Σ, E)⊗r = (H1(Σ, E)[−1])⊗r.

From this, we may expect

RΓ(SymΣ, j∗FE) ∼= Sym(H1(Σ, E)[−1]).

This combined with (13.34) gives us

(13.35) HomShv(PA1 ,FE) ∼= Sym(H1(Σ, E)[−1]).

We pass the sanity check (13.29) by comparing (13.32) with (13.35).

14. Day 5 Lecture 2

DISCLAIMER: I have tried to reproduce the lecture faithfully, but apologize for any

inaccuracies or omissions I may have introduced. In particular, I have found it difficult to

reproduce words that were verbally spoken but not written down.

Notational remarks: In the interest of compiling the combined lecture notes from

different note-takers, I will be using (−)sh for the shearing notation (“slanted box”) in BZSV.

Note that the meaning of this notation was not precisely defined in the lectures, although it

was said roughly that it turns non-zero cohomological degrees into Gm-grading.
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Conjecture 14.1. Under the Geometric Langlands Correspondence,10

Shv(BunG)
()spec

↠ ShvN (BunG) ≃ QC!(LocǦ)

P 7→ L.

For questions regarding Hom’s,

Hom(Pspec,Hecke eigensheaves) = Hom(P , “automorphic forms”)

is insensitive to the spectral projection ()spec above.

⊗s∈S Shv(XF/GO)
Θ−→ Shv(BunG(Σ))

δ0 := kXO/GO
(basic object) 7→ PX = Θ(δ0) (period sheaf)

The map above is compatible with the action of H on both sides.

At the level of functions:

C∞
c (XF/GO)

Θ−→ Fun({G− bundles w/ trivialization at s}) ∋ P = Θ(δ0)

10The (rough) conjecture below was not fully written during the lecture, and I have added L based on my

understanding.
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There is a fully ramified version of the above:

Shv(XF )→ Shv(BunG,s)

⟳ GF ⟳

C∞
c (XF )

Θ−→ Fun(BunG(Fq))

⟳ GF ⟳

In the polarized case M̌ = T ∗X̌, we define the corresponding L-sheaves as follows:

QCsh(M̌/Ǧ)→ QC!(LocǦΣ)

O 7→ LX̌

Note that the LHS is equivalent to QC!(LocX̌Ǧ (punctured disc)), and the object corresponding

to O above is the dualizing sheaf ω.

Example 14.2.

G ⟳ G/H = X,X/G = ·/H

BunH = BunX
G

π−→ BunG

PG/H = π!kBunH

Hom(PG/H ,F) = Γ(BunH , π
!F)

PH(f) =

∫
[H]

f |[H], f aut. form on [G]

Example 14.3.

G ⟳ G/N = X ⟳ T,X/(G× T ) = ·/B

BunX
G×T = BunB

BunG BunT

From this correspondence, we get the Eisenstein series functor

Eis : Shv(BunT ) Shv(BunG)

Constant Term

This is an integral transform represented by PG⟳G/N⟳T . The duality here will be

G ⟳ G/N ⟳ T ⇐⇒ Ǧ ⟳ Ǧ/Ň ⟳ Ť
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Shv(BunG) Shv(BunT )

⇐⇒

QC!(LocǦ) QC!(LocŤ )

BunB

LocB̌

Remark 14.4. Period sheaves are very far from Hecke eigensheaves. On the spectral side,

this is roughly the difference between a skyscraper sheaf vs. an L-sheaf.

Example 14.5 (Group case). Spherical variety

G×G ⟳ G⇐⇒ Ǧ× Ǧ ⟳ Ǧ (modulo a Chevalley twist)

This corresponds to the boundary conditions:

G
id

| G −→ Ǧ
id

| Ǧ

BunX=G
G×G ≃ BunG

BunG × BunG = BunG×G

∆

Pgroup = ∆!k,Lgroup = ∆!ω.

This encodes Gaitsgory’s Miraculous Duality, which says that Shv(BunG) has a version of

Verdier duality matching the Serre duality on the spectral side.

Example 14.6.

Gm ⟳ • (Neumann)⇐⇒ Gm ⟳ Gm (Dirichlet)

The Gm action on Gm on the RHS is by (left) multiplication11, and this is a non-spherical

example.

Example 14.7. M = T ∗G//fN ⟳ G (f ∈ n∗), G ⟳ •

P• = kBunG
←→ LWhit (spectral Whittacker sheaf)

Whittacker normalization:

PWhit ←→ L• = OLocǦ
= ωLocǦ

Hom(L•,−) = RΓ(LocǦ,−)

Hom(PWhit,−) = RΓ(BunN , against a character).

11added: of course, left or right does not matter since Gm is abelian
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Example 14.8. 12

Σ = “raviolo” = D ⊔D∗ D

P• = kGrG

Hom(P•,−) = H∗(GrG,−) = H∗
G(O)(GrG,−).

c = g//G = h//W ≃ ȟ∗//W

Shv(BunG(raviolo)) QCsh(ǧ∗/Ǧ))

H∗
G(•)−mod = C[G]−mod

≃

K∗

(Back to Whittacker case) Ǧ\T ∗Ǧ//fN
µ−→ Ǧ\ǧ∗ ≃ Ǧ\Ǧ× c.

Picture for sl∗2: The Kostant section κ is a section of the characteristic polynomial map

ǧ∗/Ǧ→ c given by f + Zg(e).

The Hitchin section is the global analogue of the Kostant slice. It intersects the global

nilpotent cone transversely. The Whittacker sheaf is the constant sheaf on the Hitchin

section.

T ∗BunG = Map(Σ, g∗/G
Gm

× Ω1)→ Map(Σ, c
Gm

× Ω1)

The Gaiotto Lagrangian is the (image of the) natural morphism BunM
G = Map(Σ,M/G)→

Map(Σ, g∗/G), induced by the moment map (modulo G) µ : M/G→ g∗/G.

12added: Below, note that GrG with the underline denotes not the affine Grassmanian GrG, but the Hecke

stack GO\GF /GO.



15. Day 5 Lecture 3

Ben-Zvi has explained θG,X ↔ θǦ,X̌ when we put a curve over Fq.

In this lecture, I want to go back to the case of a curve Σ over F, and explain the formulas

of the type

(15.1) ⟨PX , f⟩ =

0, some cases

a certain L-functions, else

can be formulated in a way that aligns with Ben-Zvi’s explanation and with the TQFT

picture.

In this lecture we will suppose that M = T ∗X, M̌ = T ∗X̌ are a pair of hyperspherical

spaces, both polarized, although everything today can be done with M and M̌ alone. The

following discussion is very schematic, and we will skip all manner of assumptions and details,

see BZSV paper for a careful version with proper caveats and everything pinned down.

There were many formulas of the form (15.1). In BZSV, we rewrite these formulas in the

form

⟨PX , f⟩ =
∑

x∈X̌fix

L(Tx).

The right hand side is symmetrically indexed by a space, zero comes from the absence of

fixed points on these space, the L-function comes from the tangent of the same space. In the

TQFT language, it says that PX ∈ AG(Σ) matches with the right-hand side, considered as a

function on the set LocΣ.
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On the left hand side, f is a Hecke eigenform, it corresponds to a single point on the dual

side - a homomorphism ρ : π1(Σ) → Ǧ. Therefore π1(Σ) acts on X̌ and we can take the

fixed points. On the right hand side, we sum over fixed points x for this ρ, Tx is the tangent

space, which carries a π1-representation. And L-functions are geometrized by exterior

algebra on cohomology, that is L(Tx) equals the trace of Frobenius on∑
j

(−1)j ∧j H1(ΣFq
, Tx).

Remark 15.2. This is not the ususal definition of L-function, but it is related to it by the

Grothendieck-Lefschetz trace formula (which expresses the L-function as a characteristic

polynomial of Frobenius) and for g an n× n matrix

det(1− g) =
n∑

j=0

(−1)jtrace(g| ∧i Cn)

where the usual definition is the left-hand side.

We have the local geometric conjecture: there is an equivalence of categories

Sh(XF/GO) −→ Quasi-coherent sheaves on M̌/Ǧ

where the trace of Frobenius on derived Hom’s categorified the inner product comes from the

local plancherel formula

(15.3) ⟨TV δ0, TW δ0⟩ =
∫
Ǧcompact

χV χW (q-character of M̌) dµHaar.

Under the geometric Langlands correspondence, we have

Shv(BunG) ∼= QC!(LocǦ)

PX ↔ LX̌

Now we are going to geometrize the pairings by Hom as in local Plancherel formula 15.3

⟨PX , f⟩ =
∑

x∈X̌fix

L(Tx)

on the geometric side, f corresponds to a skyscraper, geometric conjecture implies that

Hom(PX , f) = Hom(L, δf ).

Left hand side looks good, but why does fiber of the L-sheaf geometrize
∑

x L(Tx)?

The fibers of the L-sheaf above ρ concerns functions/forms on derived fixed points of

ρ : π1 → Ǧ acting on X̌.

Example 15.4. When Γ acts on a vector space W

• usual fixed points are W Γ = H0(Γ,W ) with ring of functions a symmetric algebra.

• derived fixed points record H i(Γ,W ) for all i ≥ 1, e.g. H1(Γ,W ) contributes an

exterior algebra to the function ring.
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From the discussion in the previous example, we get

fiber of L-sheaf =
⊕

x∈X̌fix

∧∗H1(Tx)

and ∧∗H1 geometrizes the L-function.

Remark 15.5. Under certain assumptions, the fibers of the L-sheaves are calculated in

section 11.8 of BZSV paper.

Next, we talk about the connection between geometry and arithmetic: In principle geomet-

rical statements for a curve ΣFq
imply numerical statements for a curve ΣFq . In practice the

two settings have different strengths and inform each other. Geometry buys something very

important, the symmetry of the two sides.
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